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 Iron oxide nanoparticles have received sustained interest for biomedical 

applications as synthetic approaches are continually developed for precise control of 

nanoparticle properties. This thesis presents an investigation of parameters in the 

benzyl alcohol synthesis of iron oxide nanoparticles. A modified seed growth method 

was designed for obtaining optimal nanoparticle properties for magnetic fluid 

hyperthermia. With a one or two addition process, iron oxide nanoparticles were 

produced with crystallite sizes ranging from 5-20 nm using only benzyl alcohol and iron 
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precursor. The effects of reaction environment, temperature, concentration, and 

modified seed growth parameters were investigated to obtain precise control over 

properties affecting radiofrequency heat generation. The reaction A2-24(205)_B2-

24(205) produced monodispersed (PDI=0.265) nanoparticles with a crystallite size of 

19.5±1.06  nm and the highest radiofrequency heating rate of 4.48
(

°C

𝑚𝑖𝑛
)

𝑚𝑔
 

(SAR=1,175.56
𝑊

𝑔
, ILP=3.1127

𝑛𝐻𝑚2

𝑘𝑔
) for the reactions investigated. The benzyl alcohol 

modified seed growth method offers great potential for synthesizing iron oxide 

nanoparticles for radiofrequency hyperthermia. 
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Chapter 1: Introduction and Background 

 

 

1.1 Radiofrequency Induced Hyperthermia: Treatment of 

Cancer 

 
In 1957 Gilchrist first reported the idea of using magnetic particles for 

hyperthermia treatment of tumors.1 Hyperthermia is often divided into three temperature 

ranges that have various effects and interactions with other therapies.2,3 Mild 

hyperthermia (39-42°C) is considered non-lethal temperature elevation and has been 

shown to sensitize tumors to chemotherapy or radiation by increased drug perfusion 

and oxygenation.3-5 Moderate hyperthermia (41-46°C) causes cells to experience heat 

stress, promotes protein degradation and interrupts vital cellular processes eventually 

leading to apoptosis.6-8 Thermoablation (>45°C) generates enough heat to directly 

destroy local tumor cells and tissues via necrosis, carbonization, and coagulation.6,8-11 

While there is no direct heat sensitivity of tumor cells compared to normal tissue, 

cancerous tumors have regions of hypoxia and low pH due to the chaotic vasculature of 

tumors.12,13 This allows for selective cell killing of tumors when hyperthermia is in the 

range of 40-44°C.12  In order to produce these heating effects in tumors by magnetic 

particles, an external radiofrequency (RF) alternating current (AC) magnetic field is 

applied which heats magnetic particles by eddy currents, dielectric losses, or hysteretic 
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heating.1 The extent and rate of particle heating depends on the size, conductivity and 

magnetic properties of the material.1,2,14-17 Gilchrist found that the frequency and field 

strength applied must be optimized to provide minimal heating of healthy tissue due to 

dielectric loss and maximize hysteretic heating of the magnetic particles.1 In this regard, 

frequencies below 100 MHz have high RF penetration and low RF absorption in human 

tissue for magnetic resonance imaging (MRI).18 It is highly desirable that high heating rates 

are achieved for the lowest possible frequencies and/or magnetic field strengths.19 It was 

determined that for safe magnetic hyperthermia the magnetic field strength and frequency 

product (H×f) should be lower than 5×109 
𝐴

𝑚𝑠
 when heating a human torso for 1 hour.19 High H×f 

values will produce more unwanted and nonspecific heating of both cancerous and healthy 

tissue due to eddy currents.19 This value was can be exceeded for smaller tissue areas and 

depending on the location of the cancer and health of the patient.19 The RF coil used in this 

work has an H×f value of 1.01x1010 
𝐴

𝑚𝑠
, which is at an acceptable level for in vitro studies and in 

vivo studies in small animals.20 Utilizing higher frequencies and magnetic field strengths, larger 

SAR values can be obtained. However, the time allowed for heating must decrease for these 

higher f and H values to deliver safe heating without discomfort to the patient. Therefore, the RF 

heating tests were conducted for 10 minutes instead of 1 hour. It has been shown that for 

“Micromods nanomag 100 nm” nanoparticles the SAR has a linear relationship with RF coil 

frequencies between 100-900 kHz.21 

 

1.2 Switching to Nanoparticles: Néel and Brownian 

Relaxation Mechanisms 
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Research in magnetic particle based hyperthermia has shifted from larger multi-

domain particles, similar to Gilchrist’s research, to smaller single-domain and 

superparamagnetic materials. The primary reason for this shift is that 

superparamagnetic nanoparticles are much more efficient at absorbing power to 

generate heat than microparticles.2 Superparamagnetic nanoparticles generate heat by 

two mechanisms. The Néel relaxation mechanism generates heat through quickly 

altering the direction of magnetic moments with respect to the crystal lattice.6 In other 

words, the alternating current (AC) magnetic field applied provides the necessary 

energy for the dipole to overcome an energy barrier, due to the particle volume and 

magnetocrystalline anisotropy, and internally alter directions.22,23 The equation for the 

energy barrier (EA) is shown in Equation 1a. For iron oxide with a crystallite diameter 

less than 8 nm, the Néel relaxation mechanism is determined by the pre-exponential 

term.23 Between 8 nm and 15 nm, the Néel relaxation mechanism is determined by the 

exponential term until Brownian relaxation mechanism becomes dominant (>16 nm).23 

The Brownian mechanism generates heat as a result of viscosity of the media resisting 

the physical rotation of the nanoparticles in an applied AC magnetic field thus releasing 

mechanical energy and heating the surrounding media.22,24 The internal, Néel, and 

external, Brownian, sources of friction generate heat by loss of thermal and mechanical 

energy.22,24 The equations for Néel relaxation time (τN)25 and Brownian relaxation time 

(τB)25-27 are shown in Equation 1b and c.14,28-30 K is the magnetocrystalline anisotropy 

constant, Vc is volume of the core particle, τoEA is the pre-exponential factor, Vh is 

hydrodynamic volume of the particle, T is temperature, kB is Boltzmann constant, and η 

is medium viscosity. The effective relaxation time (1/τ), shown in Equation 1d, 
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describes the combined relaxation mechanisms and is dominated by the relaxation 

mechanism with a shorter relaxation time.25 The Néel heating mechanism dominates at 

small particle sizes and Brownian mechanism takes over at larger particle sizes.14,15,22,30-

32 

𝐸𝐴 = KV𝑐      (1a) 

τ𝑁 = τ𝑜E𝐴exp (
E𝐴

𝑘𝐵T
)     (1b) 

τ𝐵 =
3ηVℎ

𝑘𝐵T
      (1c) 

1

τ
=  

1

τ𝑁
 + 

1

τ𝐵
      (1d) 

Several factors therefore can affect which mechanism of heating dominates, such as 

size, polydispersity, crystal structure, shape, and magnetocrystalline anisotropy.22,24 

Wide polydispersity particle solutions can affect the effective heating due to the 

presence of small and large particles that generate heat by Néel and Brownian 

mechanisms respectively.22 

  In 1993 Jordan et al. used specific absorption rate (SAR) values to evaluate 

various parameters effects on hyperthermia efficiency.14 However, this method of 

determining SAR is dependent on the equipment used or more specifically the magnetic 

field strength and frequency.21,33 Also, the SAR values calculated in this fashion are 

often misused or misinterpreted when used to indicate heating capabilities of magnetic 

nanoparticles.21 Heating capabilities can now be expressed in terms of intrinsic loss of 

power (ILP) which normalizes the SAR values by incorporating magnetic field strength 

and frequency of the heating equipment used to better compare the materials heating 

capability.21,33-34 The equations for SAR and effective SAR are shown in Equations 2a, 

and 2b and ILP in Equation 2c. Where 𝑐𝐻2𝑂 and 𝑐𝑛𝑝 are the specific heat capacity of 
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water or nanoparticles (
W×s

g×K
), mnp is the mass of total nanoparticles, 𝑚𝐻2𝑂 is the mass of 

water, (
Δ𝑇

Δ𝑡
) is the initial linear temperature increase per unit time (

K

s
), H is magnetic field 

strength applied (
A

m
) and f is the AC magnetic field frequency (kHz).30-32,34 

𝑆𝐴𝑅 =
𝑐

𝑚𝑛𝑝
(

Δ𝑇

Δ𝑡
)      (2a) 

      𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑆𝐴𝑅 =
𝑐𝐻2𝑂𝑚𝐻2𝑂+𝑐𝑛𝑝𝑚𝑛𝑝

𝑚𝑛𝑝
(

Δ𝑇

Δ𝑡
) (

1

𝐻𝑎𝑝𝑝𝑙𝑖𝑒𝑑
2 ×𝑓

)     (2b) 

 𝐼𝐿𝑃 =
𝑆𝐴𝑅

𝐻𝑎𝑝𝑝𝑙𝑖𝑒𝑑
2 ×𝑓

      (2c) 

 It has been determined that the average crystallite size and narrow size distribution are 

two of the most important factors in maximizing energy absorption and heat 

production.17,35 

 Other reasons for shifting to nanoparticles are that larger particles tend to be 

more invasive, have a higher potential for adverse damage to surrounding healthy cells, 

and do not generate uniform heating.2 Also, unlike larger magnetic particles, 

superparamagnetic nanoparticles do not retain their magnetism after removal of an 

external magnetic field and are thus less likely to aggregate which prolongs blood 

circulation time.36 Furthermore, with the combination of modern medicine and 

nanotechnology, nanoparticles can be specifically targeted to cancer cells to provide 

minimal invasiveness, and more local and confined heating.2,6,17,37,38 For these reasons, 

synthesizing nanoparticles with high SAR values are of paramount importance and are 

rigorously investigated to improve hyperthermia treatment of cancer. Higher SAR values 

are needed to lower the concentrations of nanoparticles in tumors required to deliver 

effective hyperthermia therapy.19,39 However, there have been several investigations 

that demonstrate reduced cell viability without measurable increases in macroscopic 
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temperature.22,40,41 This would suggest that SAR or ILP values may not be indicative of 

effectiveness in hyperthermia cancer therapy.22 Improvements need to be made for iron 

oxide nanoparticle hyperthermia to become clinically relevant. This includes, increasing 

SAR/ILP values, blood retention and tumor uptake, and decreasing toxicity and 

immunogenicity, while maintaining biocompatibility.20,22 This can be accomplished by 

utilizing biocompatible materials in synthesis and surface functionalization. 

 

1.3 Iron Oxide for Magnetic Hyperthermia: Ideal Properties 

and Challenges to Overcome 

More specifically, iron oxide nanoparticles are a primary candidate for 

nanomedicine therapeutic applications in part due to their RF induction heating 

properties, as well as being biocompatible and biodegradable.22,35,36,42 The body 

metabolizes the iron ions and will be used to form hemoglobin by erythrocytes.43   In 

addition, they can be classified as a theranostic agent44-47 providing diagnostic imaging 

capabilities in the form of a MRI contrast48,49 and therapeutic potential by means of 

Magnetic Fluid Hyperthermia (MFH).35,49,50 The US FDA has approved iron oxide for use 

in iron supplements51-53 and for MRI in the liver.54 Superparamagnetic iron oxide 

nanoparticles coated with aminosilanes are also currently in clinical trials in Germany for 

MFH treatment of glioblastoma and prostate cancer.37,50,55 

The optimal iron oxide nanoparticles, for heat generation by RF induction 

heating, have been shown to have a crystallite size of 15-16 nanometers (nm).30,56 This 

size gives the ideal combination of heating mechanisms, with Néel relaxation being the 

dominant process.10 Above this size, Brownian relaxation becomes the dominant 
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heating mechanism which typically yields lower heat generation.10 Although 

hyperthermia can be delivered regionally or to the whole body through the use of 

thermoseeds, water bath, ultrasound, microwave, or infrared radiation, there is still a 

demand for a therapy that can deliver sufficient hyperthermia to smaller target areas 

with less invasive procedures.22,57 Iron oxide nanoparticles offer the potential to 

generate sufficient heating to localized tumors with minimal invasiveness and have the 

advantage of intracellular localization either through tumor selective enhanced 

permeation and retention (EPR) or targeting strategies.22,58  

The main challenge to overcome is to develop an iron oxide synthesis that 

produces iron oxide nanoparticles that are easily surface functionalized for biostability 

and targeting for increased tumor uptake.22 Thus, optimization and investigation of iron 

oxide nanoparticle synthesis to control and obtain the best combination of crystallite 

size, particle size, monodispersity and magnetic properties, while maintaining minimal 

toxicity and ease of surface functionalization is of continually growing interest. 

 

1.4 Methods of Synthesizing Iron Oxides 

 Iron oxide nanoparticles can be synthesized by various methods such as electron 

beam lithography59, mechanical alloying or ball milling60-63, electrospray64, laser 

pyrolysis65-69,  or gas-phase deposition70.49 However, some of these methods are 

complex and/or lack adequate size control on the nano scale. Alternatively, iron oxide 

nanoparticles can also be produced by synthetic strategies including sol-gel71, aqueous 

co-precipitation72-77, hydrothermal reaction78, microemulsion79, flow injection synthesis80, 

chemical vapor deposition (CVD)81,82,thermal decomposition83-86, glycol48,87-89, and 
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sonochemical synthesis90.23,91,92 Co-precipitation of iron salts is the most widely used 

method for synthesizing iron oxide nanoparticles because it can produce large 

quantities of iron oxide nanoparticles easily, but this method lacks adequate control over 

size distribution.23,93  

 Thermal decomposition synthesis of iron oxide is a very versatile method that 

allows for the control of morphology and size.23 Control is obtained by varying reaction 

time, temperature, reactants concentration and/or ratio, inherent properties of the 

solvent and iron precursor, and through the use of seed growth methods.23,94 The use of 

non-polar solvents allows for tunable size, high crystallinity, easy scale-up, and a 

narrow size distribution of nanoparticles, but they can be more difficult to phase transfer, 

functionalize and purify for biological applications. In addition, most of these approaches 

rely on several seed growth steps with intermediate wash steps, multiple solvents and 

capping agents to obtain the desired 15 nm crystallite size for iron oxide 

nanoparticles.84,95 The synthesized nanoparticles then undergo rigorous phase transfer 

processes and functionalizing methods to produce a biologically stable colloidal 

suspension. MFH and nanomedicine in general rely heavily on maintaining biological 

stability of the nanoparticles and the ability to carry targeting ligands to increase the 

affinity to tumor cells.37,38,96 Thus, synthesizing nanoparticles that are easily 

functionalized, purified, stable in various media, and can be further functionalized with 

targeting or therapeutic modalities is of paramount importance.  
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1.5 Benzyl Alcohol Synthesis of Metal Oxides  

 Benzyl alcohol will be used as the solvent, capping agent and reducing agent for 

the combined reduction and thermal decomposition of iron (III) acetylacetonate 

(Fe(acac)3). Benzyl alcohol is a polar solvent and allows for the control of size, high 

crystallinity, easy scale-up, narrow size distribution, and facile surface coating for 

biological stability after thermal decomposition synthesis.97 Benzyl alcohol is found 

naturally in oils of plants and used in cosmetic products,98 as a flavor and fragrance 

additive,98-100 and as a preservative of injectable drugs.101 Benzyl alcohol has been used 

as the solvent to synthesize highly crystalline titania nanoparticles from titanium 

tetrachloride with control over the size by simply adjusting temperature and precursor 

concentrations.102 Other transition metal chlorides were used in benzyl alcohol 

synthesis to create vanadium and tungsten oxide and can be scaled up to produce 

gram amounts of product.103 Benzyl alcohol can be used to synthesize 35 different 

metal oxides from metal precursors including metal acetylacetonates, alkoxides, 

acetates and halides.104-109 While benzyl alcohol has been used as the solvent in many 

metal oxide syntheses, relatively few have been done with Fe(acac)3.
104,105 Microwave 

mediated benzyl alcohol synthesis using Fe(acac)3 as the metal precursor led to high 

crystallinity iron oxide nanoparticles in a few minutes, but with crystallite sizes of only 5 

nm.105 While quick reaction time offers a substantial benefit, this method may not have 

sufficient control over crystallite sizes in the range applicable to magnetic hyperthermia. 

Autoclave mediated benzyl alcohol synthesis using Fe(acac)3 as the metal precursor 

was able to produce crystallites ranging from 15-25 nm, however this required the use 

of a glovebox, autoclave and furnace heating at 175°C or 200°C for two days.109 The 
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complicated set-up for this synthesis hinders its applicability. By utilizing the benzyl 

alcohol synthesis under nitrogen and atmospheric conditions it may be possible to 

discern mechanistic insight into reaction with Fe(acac)3 and gain better control over 

crystallite size and polydispersity, which are the most vital material properties in 

increasing heat generation in radiofrequency hyperthermia. 

 

1.6 Project Overview 

 The overall objective of this thesis was to better understand and improve the 

benzyl alcohol approach to synthesize iron oxide nanoparticles specifically for 

radiofrequency induced magnetic hyperthermia applications. In Chapter 1, an 

introduction and relevant background information to iron oxide nanoparticles for 

radiofrequency induced magnetic hyperthermia was presented.  

Chapter 2 presents a more detailed description of iron oxide nanoparticles. Iron 

oxides have 16 known crystallite structures with numerous applications in 

nanotechnology. The crystal structure and magnetic properties of several of the iron 

oxides are reviewed, with emphasis on magnetite and maghemite which are commonly 

used in magnetic hyperthermia. 

Chapter 3 presents the benzyl alcohol synthesis of iron oxide and the 

investigation of synthetic parameters on the resultant nanoparticle characteristics. The 

effects of reaction environment, time, temperature and concentration were investigated 

to gain insight into the mechanism of benzyl alcohol synthesis. The results were 

rationalized using LaMer growth and Ostwald ripening principles. A modified seed 

growth procedure was designed and applied to the benzyl alcohol method for further 
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optimization and control of iron oxide properties important in radiofrequency induced 

magnetic heating. The complex relationships between iron oxide nanoparticle 

characteristics and radiofrequency heating are discussed. 

Knowledge gained from designing and optimizing a synthesis of iron oxide 

nanoparticles specifically for the application of magnetic hyperthermia therapy for 

cancer will be widely beneficial. Understanding how different parameters affect the 

nucleation, growth, and nanoparticle properties will be of considerable interest to natural 

product chemists, physical chemists, synthetic chemists, molecular biologists, 

biochemists, and physicists. 
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Chapter 2: Iron Oxide Nanoparticles 

 

 

2.1 Iron Oxides in Nanotechnology 

 Magnetic nanomaterials, such as iron oxide, have numerous potential 

applications. Some of these include high-density information data storage,110-113  

ferrofluids,114 magnetic sensors,115-118 catalysts,110,119-122 and permanent 

magnets.112,113,123,124 Magnetic information data storage relies on controlling the 

magnetocrystalline anisotropy of iron oxide to provide unique ways of storing data.111 

Permanent magnet applications combine the properties of magnetically “hard” (high 

magnetization saturation) and “soft” (large coercivity) materials by exchange coupling to 

produce a magnet with high saturation magnetization and large coercivity values.113 

Catalysts and magnetic sensors benefit from the use of iron oxide nanoparticles 

because of their high surface area to volume ratio enabling them to be more efficient, 

stable and selective than their bulk counterparts.120 An advantage over other 

nanoparticles for catalysis and sensing applications is their inherent magnetism allowing 

them to be magnetically recoverable and isolatable.120 Biotechnology and nanomedicine 

utilize iron oxide nanoparticles for diagnostic and therapeutic applications. Iron oxide 
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nanoparticles as MRI contrast agents have been widely researched and show strong 

T2-weighted and T2* image enhancement.25,125-129 Iron oxide nanomaterials are also 

being researched and clinically tested for use as drug delivery and magnetic 

hyperthermia applications due to their small size, biocompatibility, surface 

functionalizability, and imaging capabilities.30,42,125,130-132 

 

2.2 Iron Oxide Crystal Structures 

 Iron oxides can be commonly found in the environment usually in the form of 

iron(II) or iron (III) cations or some combination of the two cations.92,133,134 The iron 

cations can form crystal structures with O2
- and/or OH- anions, and are termed oxides, 

hydroxides, or oxide-hydroxides. However, iron oxide is a general term that often refers 

to the oxides, hydroxides and oxide-hydroxides.92 There are currently sixteen known 

iron oxides pure phases with differing stoichiometry and crystal structures.92,133,135 The 

iron oxides can be subcategorized as iron oxide, iron hydroxide, and iron oxide-

hydroxides and are shown in Table 2.1.135 The crystal structures of magnetite, 

maghemite, hematite, and wüstite are briefly discussed in the following sections. 

 

 

 

 

 

 



www.manaraa.com

 
 

14 
 

Table 2.1. The sixteen known pure phase iron oxides categorized into iron oxide, iron 

hydroxide and iron oxide-hydroxide. Reproduced from135. 

Iron Oxide 

Mineral Name Formula 

Wüstite FeO 

Magnetite Fe3O4 
Hematite α-Fe2O3 

β-Maghemite β-Fe2O3 
Maghemite γ-Fe2O3 
ε-maghemite ε-Fe2O3 

High pressure iron oxide Fe4O5 

Iron Hydroxide 

Mineral Name Formula 

Iron(II) hydroxide Fe(OH)2 
Bernalite (Iron(III) hydroxide) Fe(OH)3 

Iron Oxide-Hydroxide 

Mineral Name Formula 

Goethite α-FeOOH 
Akaganéite β-FeOOH 

Lepidocrocite γ-FeOOH 
Feroxyhyte δ-FeOOH 

High Pressure FeOOH FeOOH 
Ferrihydrite Fe5HO8•4H2O approx. 
Schwertmannite Fe16O16(OH)y(SO4)z•nH2O 
Green Rusts Fex

3+Fey
2+(OH)3x+2y-z(A

-)z ; A
-=Cl- ,1/2SO4

2-,CO32- 

 

 

2.2.1 Magnetite Crystal Structure 

 The crystal structure of magnetite is an inverse spinel structure.25,110,135-138 as 

represented in Figure 2.1.139 In this structure, 32 oxygen atoms are arranged in a close 

packed face centered cubic (FCC) array with iron atoms occupying 1/8 of the 64 

tetrahedral and ½ of the 32 octahedral vacancies.25,135,136  Properties of magnetite are 
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shown in Table 2.2. reproduced from 135. The Fe3O4 formula can be written as 

Fe3+(Fe2+Fe3+)O4 to indicate the inverse spinel structure where eight Fe3+ ions occupy 

the tetrahedral sites and an equal mixture of sixteen Fe2+
 and Fe3+ ions occupy the 

octahedral sites.25,136,138 The tetrahedral and octahedral sites can be considered as 

sublattices within the FCC lattice of oxygen atoms. The iron ions in both the octahedral 

and tetrahedral sublattices are coupled ferrimagnetically.136,138 Hund’s rule indicates that 

the magnetic moments of Fe3+ and Fe2+
 ions contain 5 Bohr magnetons (μB) and 4μB, 

respectively.136 The eight Fe3+ ions in the octahedral and the eight Fe3+ ions in the 

tetrahedral sites are coupled antiferromagnetically and essentially cancel each other out 

so that only the Fe2+ ions contribute to the magnetization to give magnetite a calculated 

μB=4.07 per formula unit closer to that expected of Fe2+ ions.136,137 Thus, the iron ions in 

the two sublattices are arranged ferrimagnetically with respect to each other.136 Unequal 

amounts of Fe2+
 and Fe3+ ions and the difference in Bohr magnetons between the two 

iron ions give rise to a net magnetic moment that couples ferrimagnetically.136  
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Figure 2.1. Diagram showing the side view and top view of wüstite (a), magnetite (b), 

and hematite(c). Two top views are shown for magnetite and hematite to visualize the 

different layers of the crystal structure. From 139 
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Table 2.2. Properties of magnetite, maghemite, hematite and wüstite. Reproduced from 

135. 

Mineral Name Magnetite Maghemite Hematite Wüstite 

 
Cubic Cubic or 

tetragonal 
Rhombohedral 
hexagonal 

Cubic 

Cell Dimensions 
(nm) 

a= 0.8396 a= 0.83474 a= 0.50356 
c= 1.37489 

a= 0.4302-0.4275 

Formula units, 
per unit cell, Z 

8 8 6 4 

Density (g/cm3) 5.18 4.87 5.26 5.9-5.99 

Octahedral 
occupancy 

- - 2/3 - 

Color 
Black Reddish-

brown 
Red Black 

Hardness 5.5 5 6.5 5 

Magnetism 
Ferrimagnetic Ferrimagnetic Weekly 

ferromagnetic or 
antiferromagnetic 

Antiferromagnetic 

Currie (Néel) 
Temperature (K) 

850 820-986 956 203-2111) 

Melting point (°C) 1583-1597  1350 1377 

Boiling point (°C) 2623   2512 

1) Néel Temperature 

 

 

2.2.2 Maghemite Crystal Structure 

 The crystal structure of maghemite is an inverse spinel structure and closely 

related to the structure of magnetite. 110,135,139-141 The difference is due to the fact that 

most of the Fe ions are Fe3+.135 It consists of 32 oxygens, 21 1/3 Fe3+ and 2 1/3 

vacancies in the octahedral sites.135,140,141 Properties of maghemite are shown in Table 

2.2. reproduced from 135. Maghemite has a reddish-brown color and is a 

ferrimagnet.141,142  γ-Fe2O3 is metastable and closely resembles the structure of 

Fe3O4.
110,138,141 At high temperatures the metastable maghemite is converted to 
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hematite.141 The temperature at which this occurs depends on the size and crystallinity, 

however it has been reported to generally occur at 400°C.135 Magnetite can be oxidized 

to maghemite when heated in the presence of organic compounds.141,142 When this 

occurs, the Fe2+ ions in the octahedral sites of magnetite are oxidized to Fe3+ ions and 

leave cation vacancies (X), thus the formula for maghemite can be written as 

(Fe3+)8(Fe3+
5/3X2/3)8O32.

138,141,142  

 

2.2.3 Hematite Crystal Structure 

 Hematite (α-Fe2O3) is the most common iron oxide found in nature.110,141 It has a 

red color and is considered a ferromagnetic material.110,135,142 The crystal structure 

(Figure 2.1) is closely related to rhombohedral corundum.135,139 In the crystalline 

structure the oxygens are in a hexagonal close packed structure with Fe3+ ions in two-

thirds of the octahedral sites.110,135 Properties of hematite are shown in Table 2.2. 

reproduced from 135. The structure of hematite is comprised of rhombohedrally centered 

hexagonal cells.135,141 Below the Morin Temperature (TM), 260 K, hematite is 

antiferromagnetic.141Hematite transitions to a paramagnetic state above the Néel 

Temperature (TN) of 950 K.141 In between the TM and TN, the spins are slightly canted, 

about 5°, resulting in a weak ferromagnetic state.141 Magnetite, maghemite, and other 

iron oxides can be eventually oxidized under the correct conditions to hematite because 

hematite is the thermodynamically favored state.141,142 
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2.2.4 Wüstite Crystal Structure 

 The crystal structure of wüstite (Figure 2.1) resembles the crystal structure of 

sodium chloride (NaCl).135 In this crystallite structure the oxygen anions are in a closed 

packed FCC arrangement and the Fe2+
 ions reside in the octahedral interstitial sites.135 

Properties of wüstite are shown in Table 2.2. reproduced from 135. This crystal structure 

can only be formed above 843K and is unstable and will revert to Fe and Fe3O4 below 

this temperature.135 Depending on the partial pressure of oxygen and the temperature 

the Fe2+
 ions are oxidized to Fe3+

 ions resulting in 5-15% differences observed in the 

stoichiometry, Fe1-xO.138,143  

 

2.3 Magnetic Properties of Iron Oxide 

The iron oxides commonly used in magnetic hyperthermia are magnetite (Fe3O4) 

and maghemite (γ-Fe2O3).
6,25,144 This is due to their magnetic properties as well as 

being considered biocompatible and biodegradable.22,42 Iron oxides can behave as 

multi-domain particles, single-domain particles, or as superparamagnets as the particle 

diameter decreases. The transition from superparamagnetism to single-domain particles 

is thought to occur around 20-30 nm depending on the material.145 For maghemite it has 

been estimated that the critical diameter above which particles contain multiple domains 

is 166 nm.113 Magnetite theoretically transitions to multi-domain particles at 80-100 

nm.145,146 Since, the transition to multi-domain particles is above the size range of 

particles of interest for magnetic hyperthermia, they are not discussed in detail. 

Superparamagnetism can be defined as a collection of non-interacting magnetic 

moments that respond when the thermal energy (KBT) exceeds the anisotropic 
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energy.91,112,124  Superparamagnetism arises because the collective magnetic moments 

of the entire particle is considered, possibly as high as 104-105 Bohr magnetons, rather 

than an individual atom’s magnetic moment and therefore very high magnetic saturation 

and susceptibility is observed.25,124 Superparamagnets respond to thermal fluctuations 

when the thermal energy surpasses the anisotropic energy altering the direction of the 

magnetic moments.124 These particles will eventually reach an equilibrium similar to 

thermal equilibrium.124 The size at which superparamagnetism is reached is called the 

superparamagnet limit and varies depending on the material.25,91 The hysteresis loop for 

a superparamagnet (Figure 2.2.) has negligible coercivity, the magnetic field strength 

required to force magnetization to zero, and negligible magnetic remanence, the 

remaining magnetism after removing the magnetic field.25,91,124 These properties allow 

for excellent magnetic hyperthermia applications as the nanoparticles respond quickly to 

changes in magnetic field which are present due to the alternating current magnetic field 

in the radiofrequency range. Superparamagnet iron oxide nanoparticles are also ideal 

for biomedical applications due to their low probability of aggregation due to any 

remnant magnetism at room temperature.25,91 Metallic nanoparticles have higher 

magnetization values than metal oxide nanoparticles, however they are toxic in most 

biomedical applications.91 
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Figure 2.2. Representative hysteresis loop for single domain ferromagnetic (a) and 

superparamagnetic (b) crystals plotted as magnetization (M) versus magnetic field (H). 

MS, Mr, and Hc correspond to magnetization saturation, remnant magnetization, and 

coercive field respectively. From 123 

 

Nanoparticles with diameters above the superparamagnet limit are considered to 

be single domain particles.91,124 Single domain particles have a uniform spin direction 

and do not contain domain walls allowing for large magnetic coercivities due to lack of 

domain walls.91,112,124 Due to the reduced magnetostatic energy at sufficiently small 

volumes the multiple domain walls are energetically unfavorable.112  Additionally, shape 

anisotropy can increase the coercivity of single domain nanoparticles.91 On the single 

domain size range it is energetically favorable to allow for external magnetostatic 

energy rather than create domain walls.91 Thus larger particles will form multiple 

domains separated by domain walls.91,112 The energy of exchange, anisotropy and 

magnetostatic interactions determines the size and shape of each domain within the 

larger or bulk material.112 
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Chapter 3: Benzyl Alcohol Synthesis of Iron Oxide 

Nanoparticles 

 

 

3.1 Experimental Section  

 3.1.1 Reagents, Materials, and Equipment 

All chemicals and materials were used as received.  Tetramethylammonium hydroxide 

(TMAOH) solution (Alfa Aesar, 25% w/w aq.), copper TEM grids (Ted Pella Inc., 200 

mesh Formvar carbon type B), Fe inductively coupled plasma (ICP) standard (Alfa 

Aesar, Iron, plasma standard solution, Specpure®, Fe 1000 µg/mL), hydrochloric acid 

solution (HCl) (Electron Microscopy Sciences, 2%), potassium ferrocyanide aqueous 

solution (Prussian Blue) (Electron Microscopy Sciences, 2%), two-neck 100 mL round 

bottom flask (Chemglass), coil style reflux condenser (Chemglass), iron (III) 

acetylacetonate (Fe(acac)3) (Acros Organics, 99+%), benzyl alcohol (Alfa Aesar, 99%), 

and acetone (Fisher Scientific, ACS grade) 

 

 3.1.2 Modified Seed Growth of Iron Oxide Nanoparticles 

 Iron oxide nanoparticles were synthesized under nitrogen flow or open to air in a 

two-neck 100 mL round bottom flask (Chemglass) equipped with a coil style reflux 

condenser (Chemglass). First, iron (III) acetylacetonate (Fe(acac)3) (2, 4, or 6 g) (Acros 
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Organics, 99+%) was dissolved in benzyl alcohol (20 mL) (Alfa Aesar, 99%) under 

constant magnetic stirring. The solution was stirred vigorously and immediately heated 

to reflux. For syntheses conducted under nitrogen flow the nitrogen was initially bubbled 

in the benzyl alcohol and Fe(acac)3 for 30 minutes before heating to reflux. Upon color 

change from dark red to black, the reactions were carried out for 2 or 24 hours. The 

reaction was removed from heat and stirred for 15 minutes to allow for cooling. The 

resultant iron oxide nanoparticles were precipitated in acetone (Fisher Scientific, ACS 

grade) and extracted by magnetic separation.  Washing with acetone was repeated 3-5 

times with brief sonication (Cole Parmer, Ultrasonic Cleaner 8892) between washes. 

Flowing nitrogen was used to dry the nanoparticle product to a fine powder. 

 For the modified seed growth procedures, Fe(acac)3 (2, 4, or 6 g) was dissolved 

in benzyl alcohol (20 mL) in a round bottom flask under a coil style reflux condenser, 

stirred vigorously and heated to reflux, as described above. At 2 or 24 hours of reaction 

time a second addition of Fe(acac)3 (2, 4, or 6 g) was added, as a solid powder, directly 

to the hot reaction and continued to react for 2 or 24 hours. 

 For reactions where precise control of temperature was required, the heating 

mantle (Thermoscientific, electrothermal heating mantle) was replaced with a silicone oil 

bath (Alfa Aesar) and temperature controlled by the magnetic stirring hot plate (VWR, 

VMS-C7) equipped with a temperature control unit (VWR, VT-5 S40). To determine 

important temperature thresholds, the temperature and color of the solution was 

monitored and recorded every minute until reaching the desired reaction temperature 

and the solution color changed completely to black indicating high levels of nanoparticle 

formation.  Reactions were heated at the highest ramp rate obtainable by the heating 
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mantle or hot plate and oil bath.  Products from the seed growth were cooled and 

washed under the same conditions as all other reactions listed above. 

 

3.2 Characterization Techniques 

 3.2.1 X-ray Diffraction (XRD) 

 X-ray diffraction (XRD) is a characterization technique that can be used to 

determine the crystal structure of a material without destroying the sample.135,147-150 The 

bulk crystalline structure of a material can be determined by investigating the diffraction 

pattern resulting from x-rays interacting with the sample.149,150 To accomplish this, 

electromagnetic radiation in the form of x-rays with a typical wavelength (λ) of about 0.1 

nm are used to probe the atoms of the crystal.135,150 The wavelength is comparable to 

the interatomic distance of atoms in the crystal and thus the atoms can elastically 

scatter the x-rays.135,149,151 The scattered x-rays will constructively and destructively 

interfere producing a diffraction pattern that is used to determine the crystal structure of 

a crystalline material.135,149,150 The consistent collections of atoms throughout a 

crystalline material will elastically scatter incident x-rays at certain angles and 

depending on the distances between the atoms of the lattice the scattered x-ray wave 

will constructively interfere in specific directions.135,149 Bragg’s law, Equation 3., defines 

the incident angle (θ), and distance between atomic planes of the lattice (dhkl), where 

elastically scattered x-rays will constructively interfere for an incident x-ray with 

wavelength (λ) and spaced at integer multiples (n) of the path difference.135,149   

𝑛𝜆 = 2𝑑ℎ𝑘𝑙 sin θ     (3) 
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The peak positions of the resulting XRD pattern are used to determine the lattice 

parameters, size and symmetry, however to determine the organization of atoms the 

peak intensities of the diffractions are used.149 Often the investigator has an idea of the 

composition of the crystal and so the peak positions and intensities of the diffraction 

pattern are compared to known crystallography data in order to verify crystal 

structure.149 Powder XRD utilizes a large collection of crystals, the powder, which allows 

the incident x-ray to interact with the sample at numerous angles or orientations at the 

same time.150 The powder allows all possible crystal orientations to be investigated by a 

diffractometer.150 This produces diffraction cones which are used to determine the 

diffraction pattern.150 It is important to note that XRD cannot be used to distinguish 

magnetite from maghemite as their diffractograms are identical.135 

XRD line broadening can be used to determine the crystallite size of iron 

oxides.135 The Scherrer formula, Equation 4., is used to calculate the crystallite size 

using the corrected peak width at a certain angle in the XRD measurement, however it 

underestimates the size for crystals with multiple crystallites.135 The coherently 

scattering domain that is perpendicular to the hkl plane (MCLhkl) gives the mean 

crystallite size, however this is biased towards larger crystallites as they more intensely 

scatter.135 

𝑀𝐶𝐿ℎ𝑘𝑙 =  
𝐾𝜆

𝑏 cos 𝜃
      (4) 

In the Scherrer formula K is a shape factor, b is the full width half maximum (FWHM) of 

the peak being measured, and λ is the wavelength of the x-ray.135 The value of b is 

corrected for instrument error by subtracting the instrument width. 
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Powder x-ray diffraction (XRD) patterns were obtained on a PANalytical X'Pert 

Pro Materials Research Diffractometer. Dried samples (~ 300 mg) were mildly ground to 

obtain a fine powder. The fine powder was transferred to a low background silicon disk. 

XRD patterns were scanned at 20-80° 2θ using a Cu Kα x-ray source and evaluated 

using X’Pert High Score Plus software. The Scherer equation was used to calculate the 

crystallite size from peak broadening of diffraction peaks. Standard deviation of the 

crystallite size was calculated from several peaks of the XRD pattern. 

 

 3.2.2 Dynamic Light Scattering (DLS) 

Dynamic light scattering (DLS) is used to characterize particles in solution.  

Particles ranging from 1 nm to 5 μm can be analyzed. The hydrodynamic size , size 

distribution in terms of the polydispersity index (PDI), and the diffusion coefficients of 

particles in solution can all be measured using DLS.152,153 The basic principle of DLS 

involves probing a colloidal suspension with a monochromatic light source and then 

recording the time variation of the intensity of the light scattering by the nanoparticles 

that are diffusing in a solution.152,153  The intensity autocorrelation function is then used 

to express this data in terms of the correlation between the intensity measured at one 

time point and the intensity after a delay in time.153 The diffusion coefficients are used to 

calculate the hydrodynamic diameter and PDI values.153 The diffusion coefficient can be 

measured since the nanoparticles in solution have kinetic energy.152 The scattering 

intensity of light for scattering angles over time relates to the diffusion of the 

nanoparticles through the solution.152 Thus, several parameters such as viscosity and 

refractive index of the solution need to be known in order to effectively characterize the 
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nanoparticles size.  The basic equation utilizes the range of scattering angles (θDLS), 

refractive index (n), and the incident light’s wavelength in a vacuum (λ) to calculate the 

magnitude of the scattering wave (q) shown in Equation 5.152  

𝑞 = (
4𝜋𝑛

𝜆
) 𝑠𝑖𝑛 (

𝜃𝐷𝐿𝑆

2
)              (5) 

Utilizing the Stokes-Einstein equation (Equation 6.) the hydrodynamic radius 

(RH) can be determined for spherical particles, where KB is Boltzmann constant, T is the 

solution temperature, and η is the medium viscosity.152,153 The hydrodynamic radius is 

directly related to the diffusion coefficient (Df) which is the diffusion of the nanoparticles 

through the medium it is dispersed within.152 

𝐷𝑓 =  
𝐾𝐵𝑇

6𝜋𝜂𝑅𝐻
      (6) 

The PDI value is calculated from the average decay rate (⟨Γ ⟩) and the variance of the 

decay rate distribution (μ2) as shown in Equation 7.152 

𝑃𝐷𝐼 =
μ2

〈Γ〉2      (7) 

Since, true monodispersity is unlikely the calculated ⟨Γ ⟩ and q values from the 

correlation function can then be used to calculate the average hydrodynamic radius as 

shown in Equation 8.152 Thus, a weighted function can be used depending on the 

instrument used that will calculate the summation of all possible decay rates for each 

particle and will relate this to a size distribution.153 Since this is a weighted average it is 

best to use this value as a “semi-quantitative” representation of the size distribution 

rather than the exact size distribution.153 

𝑅𝐻 =  
𝐾𝐵𝑇

6𝜋𝜂〈Γ〉
𝑞2     (8) 
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Since this data is a collection or average of the measured nanoparticles in 

solution the data can be presented as based on number, volume, or intensity. The 

intensity values will be biased towards larger sized nanoparticles as they will more 

intensely scatter light. Therefore, the volume and/or number measurements are often 

more indicative of the true hydrodynamic diameter.  

DLS can also be used to determine the thickness of surface functionalities added 

to the nanoparticles. To do this the hydrodynamic diameter determined for the 

nanoparticles with and without the surface functionalization are measured and then 

subtracted. This characterization technique offers a rapid and easy method for indirect 

measurement of particle size in solution, thickness of surface functionalization’s, and 

measure of polydispersity based on number, intensity, or volume measurements.152 It 

has the added benefit of being a nondestructive technique.152 

The hydrodynamic diameters and polydispersity indexes of iron oxide 

nanoparticles were analyzed at ambient conditions using a Malvern Zetasizer Nano-ZS 

(Malvern Instruments, U.K.). The DLS light source used was a He-Ne laser (633 nm, 

max 4 mW). Iron oxide nanoparticles (20 mg/mL) were dispersed in 

tetramethylammonium hydroxide (TMAOH) solution (0.25%) and sonicated for 180 

minutes. After sitting overnight a 1:100 dilution (0.01 mL diluted in 0.99 mL H2O) was 

made for DLS analysis. Samples were then transferred to a low volume disposable 

cuvette and hydrodynamic diameter and PDI values were calculated as an average of 5 

runs containing 11 measurements per run. 

When measuring the hydrodynamic diameter of nanoparticles dispersed in 

TMAOH it was important to verify that the hydrodynamic diameter and PDI did not 
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significantly change based on the concentration of TMAOH. This is important to 

determine as nanoparticles with different particle sizes may require different 

concentrations of TMAOH for dispersion. The hydrodynamic diameters and PDI of 

nanoparticles produced from a modified seed growth dispersed in various 

concentrations of TMAOH are shown in Table 3.1. 

 

Table 3.1. Initial hydrodynamic diameters and PDI values for various v/v % 

concentration of TMAOH. 

% TMAOH 
Hydrodynamic 

Diameter (nm) 
PDI

a
 

0.0625 25.99 0.38 

0.125 29.96 0.363 

0.25 23.61 0.39 

0.5 26.12 0.41 

aPolydispersity Index (PDI) determined by DLS. 

  

 3.2.3 Vibrating Sample Magnetometry (VSM) 

Vibrating sample magnetometry (VSM) can be used to determine the type of 

magnetism based on the hysteresis loop produced. A representative ferromagnetic and 

superparamagnetic hysteresis loops are displayed in Figure 2.2. To produce a 

hysteresis loop a sample is loaded into a magnetometer and the external magnetic field 

applied starts at zero and is increased until the magnetization becomes saturated or 

reaches a magnetization maximum.135,150 The magnetization saturation is the point at 

which all of the magnetic moments are aligned in accordance with the direction of the 
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externally applied magnetic field.135,150 At this point the external magnetic field direction 

is reversed and the magnetization is recorded until it reaches the saturation 

magnetization point for the “negative” external magnetic field.135,150 To complete the 

hysteresis loop the external magnetic field direction is then reversed again and returned 

to the “positive” external magnetic field maximum where the initial saturation 

magnetization was reached. The shape, height, and width of the loop are all indicative 

of the materials type of magnetism. 

Information gained from magnetometry includes the saturation magnetization 

(Ms), remnant magnetization (Mr), initial magnetic susceptibility (X), and coercivity (Hc). 

The saturation magnetization is when all of the magnetic moments are oriented in the 

same direction or saturated and thus the magnetization does not increase with 

increasing magnetic field strength applied.135,150 The remnant magnetization is the 

amount of magnetization remaining after the external magnetic field (H) is returned to 

zero.135,150 The magnetic field required to return the magnetization to zero or 

demagnetize is termed the coercivity or coercive field.135,150 The initial magnetic 

susceptibility is determined from the initial linear increase in magnetization as the 

external magnetic field applied increases.135 Samples containing magnetite and 

maghemite will overpower the magnetic properties of other iron oxides detected in 

magnetometry due to their ferrimagnetic properties.135  

Magnetic characteristics were probed using a VersaLab 3 Tesla Cryogen-Free 

Vibrating Sample Magnetometer (VSM) (Quantum Design). Samples were prepared by 

weighing dry samples (5-15 mg) and sealing in a sample capsule (Quantum Design). 

VSM sample capsules were loaded and scanned for offset at 35 mm. Moment versus 
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field measurements were conducted at <50 Torr purged pressure, a sweep rate of 150 

Oersted/ second (Oe/s) with no automatic centering and scanning 5 quadrants from 0 

Oe to 15,000 Oe (Hmax) to -15,000 Oe (Hmin). Saturation magnetization was 

determined from the magnetization versus magnetic field strength plots at Hmax or 

Hmin. Samples were mass corrected with thermogravimetric analysis (TGA). 

 

 3.2.4 Thermal Gravimetric Analysis (TGA) 

Thermal gravimetric analysis is a thermoanalysis characterization method that is 

routinely used to analyze the weight loss of a material depending on the temperature 

applied.135 Typically, samples are weighed on a highly sensitive balance and the weight 

is recorded as the temperature is increased at a rate of 2-10 °C/min.135 This technique is 

useful in determining the mass of impurities in a sample. Such impurities can include 

water content, organic compounds, surface functionalities, or chemicals used in 

synthesis or wash steps that were not adequately removed. This can be expressed in 

terms of mass percent loss. The mass percent remaining is used to correct the mass of 

the sample used in other characterization techniques where mass of the pure material is 

important, such as VSM. 

To determine mass corrected values, thermogravimetric analysis (TGA) was run 

on a Q5000 TGA (TA Instruments). Dry samples (5-50 mg) were loaded on platinum 

pans and the temperature was ramped at 10 °C/min from room temperature to 150°C 

and held isothermal for 15 minutes. Subsequently, ramping was continued at 10 °C/min 

to 400°C and held isothermal for 60 minutes. TGA was run under a nitrogen flow rate of 

25 mL/min.  
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 3.2.5 Transmission Electron Microscopy (TEM) 

Transmission electron microscopy (TEM) utilizes a beam of electrons to obtain 

an image with atomic scale resolution.153,154 The electrons are produced by a hot 

filament, which are then accelerated by an electron gun, and the beam is then focused 

by several electro-magnets.153,154 The beam of electrons will then interact with the 

sample and the intensity of the transmitted electron beam will be affected by diffraction, 

atomic number, and phase contrast.154 Therefore it is important to use a sample stage 

with properties different than the sample to maximize the contrast for higher resolution 

images.153,154 

Bright field TEM images of iron oxide nanoparticles were obtained with a Zeiss 

LIBRA® 120 PLUS TEM. Samples were prepared for TEM by drying 1:10 dilution of iron 

oxide nanoparticles in 0.25% TMAOH solution (2 mL; 20 mg/mL) on copper TEM grids 

(Ted Pella Inc., 200 mesh Formvar carbon type B). Images of CMPVA functionalized 

iron oxide nanoparticles were loaded at a 1:10 dilution after all clean up and filtering 

processes described above. Nanoparticle size measurements were performed using 

Image J software. 

 

 3.2.6 Radiofrequency Heating 

The heating properties of iron oxide nanoparticles synthesized by different 

parameters were investigated using 1.2-2.4 kW EasyHeat induction heating system with 

a coil designed at a set point of 200 Ampere (A) to run at 1222 watt (W) and frequency 
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(f) of 269 kHz to produce an alternating magnetic field with a magnetic field strength (H) 

of 37.4 kA/m at 175.4 A. The magnetic field strength of a coil can be calculated from 

Ampere’s law for a solenoid as shown in Equation 9.155 Where B is the magnetic field, 

L is the length of the coil, N is the number of turns in the coil, I is the current, and µo is 

the permeability of free space. 

BL =  µoNIo       (9) 

 Using Equation 10.150 to relate the magnetic field to magnetic field strength (H) 

we can determine a reasonable approximation for the magnetic field strength inside the 

coil, by substituting into Equation 9. to give Equation 11. The coil used, in determining 

RF heating properties, has N= 8 turns and a L=0.0375 m which corresponds to H= 37.4 

kA/m at 175.4 A.  

B =  µoH             (10) 

H =  
N

𝐿
Io           (11) 

 The temperature of the solution being exposed to the RF AC magnetic field was 

measured in situ with an OpSens fiber optic temperature sensor and recorded by 

SoftSens software. Initial tests were performed on iron oxide nanoparticles in 0.25% 

TMAOH aqueous solution (3 mL; 20 mg/mL) to characterize the ability of the iron oxide 

nanoparticles to heat in solution. The RF heating was conducted at 175.4 A, and 

H=37.4 kA/m for 600 seconds and the temperature was recorded every 1.4 seconds. To 

account for convection heating, water (3 mL) was measured under the same conditions. 

The temperature rise was constant over the entire 600 s with a dT/dt value of 0.549°C. 

This value was used to correct the initial linear temperature rise of RF heating of iron 

oxide TMAOH samples.  
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 RF heating values are corrected for the concentration of iron as determined by a 

Prussian Blue assay. A standard curve was produced by Prussian Blue UV-Vis 

absorption assay (λ=715 nm) with a Fe inductively coupled plasma (ICP) standard (Alfa 

Aesar, Iron, plasma standard solution, Specpure®, Fe 1000 µg/mL) and UV-Vis 

absorption with a Nanodrop 2000c spectrometer (Thermo Scientific).   The RF heating 

samples were first diluted 1:100. Then samples (10 µL) were mixed with HCl (10 μL; 

2%) (Electron Microscopy Sciences) and Prussian Blue (20 μL; 2%) (Electron 

Microscopy Sciences). After exactly 15 minutes of incubation at room temperature UV-

Vis absorption of prepared samples (2 μL) was measured with no baseline correction.  

 

3.3 Results and Discussions 

 3.3.1 Investigation of Synthesis Parameters 

 Several synthetic parameters such as temperature, concentration, time and 

addition of extra iron precursor were investigated to optimize the iron oxide 

nanoparticles for magnetic fluid hyperthermia applications. When investigating the 

reaction concentration the reaction volume of 20 mL of benzyl alcohol was not varied 

and instead the amount of Fe(acac)3 was modulated. 

 To keep track of the reaction conditions, the following naming system was 

utilized. A and B denote the first or second additions of Fe(acac)3 respectively and are 

separated by an underscore. The A and B are followed by numbers indicating the gram 

amount of Fe(acac)3 added at the respective addition. This is followed by a “-X” with X 

indicating the time in hours the reaction proceeded before a subsequent addition. When 

temperature was investigated as a parameter, it is indicated by the number in 
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parenthesis beside the reaction time. A2-24(175)_B2-24(175) for example indicates a 

reaction with 2 g of Fe(acac)3 initially added to 20 mL of benzyl alcohol in the presence 

of air. This was reacted for 24 hours at 175°C before a second addition of 2g of 

Fe(acac)3, which was then reacted for an additional 24 hours at 175°C. When the 

reaction was carried out under nitrogen flow the reaction name starts with a “N2”, for 

example N2-A2-24(205) describes a synthesis of 2 g of Fe(acac)3 initially added to 20 

mL of benzyl alcohol and reacted for 24 hours at a temperature of 205°C. If a 

temperature is not provided, all reactions were carried out using a heating mantle at 

identical temperatures as confirmed by a similar rate of reflux. 

Each reaction was characterized using XRD, VSM corrected by TGA, RF heating 

corrected by Prussian blue analysis, and DLS to determine crystallite size, 

magnetization saturation (MS), RF heating, and hydrodynamic diameter and PDI values 

respectively. The XRD pattern for reactions N2-A2-24, A2-24, and A2-24_B2-24 are 

shown in Figure 3.1. The XRD patterns of all samples are not shown as they were all 

indicative of iron oxide material. XRD peak data was used to calculate the crystallite 

size and these values are shown in their respective sections where they are discussed.  

All of the RF heating curves are not shown, instead the heating rate calculated from the 

initial linear temperature increase of the heating curve was measured and corrected for 

concentration of Fe by Prussian blue analysis. These RF heating values are shown in 

the tables in their respective sections. Selected RF heating curves are shown in Figure 

3.2. for deionized water, N2-A2-24, A2-24, A2-24_B2-24, and A2-24(195)_B2-24(195).    

A representative DLS pattern and peak data are shown for reaction A4-24(195)_B4-

24(195) in Figure 3.3. and Table 3.2. respectively. The VSM hysteresis loop and TGA 
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determined weight loss were used to determine the magnetization saturation for 

reaction A2-24(195)_B2-24(195), as shown in Figure 3.4. and  Figure 3.5. respectively. 

 

Figure 3.1. XRD analysis of reactions N2-A2-24 under N2 (blue), A2-24 (red), and A2-

24_B2-24 (green). XRD patterns are offset by 100 count increments. 
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Figure 3.2. Heating curves of 3 mL of water and iron oxide samples dispersed in 0.25% 

TMAOH. Concentrations of iron determined by Prussian Blue UV-VIS are 0, 14.48, 

15.40, 14.00, and 15.36 mg/mL for deionized water (blue), A2-24 under nitrogen 

(green), A2-24 (red), A2-24_B2-24 (purple), and A2-24(195)_B2-24(195) (black) 

respectively. An alternating magnetic field 175.4 A at frequency of 270 kHz for 600 

seconds was used and the temperature was recorded every 1.4 seconds. 
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Figure 3.3. The size distribution by percent intensity (A) and size distribution by percent 

volume (B) for reaction A2-24(195)_B2-24(195). The calculated Z-average 

hydrodynamic diameter = 47.75 nm and the PDI=0.219.  

 

Table 3.2. Hydrodynamic size, percent composition, and width of each peak for the size 

distribution by percent intensity and size distribution by percent volume for reaction A2-

24(195)_B2-24(195). 

Size Distribution by Percent Intensity 

  Hydrodynamic Diameter (nm) % Intensity Width (nm) 

Peak 1 47.08 86.8 14.31 

Peak 2 313.3 13.2 95.5 

Peak 3 0 0 0 

Size Distribution by Percent Volume 

  Hydrodynamic Diameter (nm) % Volume Width (nm) 

Peak 1 37.52 99.3 11.26 

Peak 2 328.1 0.7 109.5 

Peak 3 0 0 0 

 

A

B
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Figure 3.4. Hysteresis loop of 10.303 mg of reaction A2-24(195)_B2-24(195). The mass 

of 10.901 mg was weight corrected using a weight loss of 5.4836% determined by TGA. 
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Figure 3.5. TGA of reaction A2-24(195)_B2-24(195) with a final mass percent of 

0.945164 at 400°C. 

 

 3.3.2 Effect of Reaction Environment 

 Iron oxide nanoparticles were first synthesized in benzyl alcohol under nitrogen 

flow. The use of nitrogen or argon flow is often the standard method in the literature 

when carrying out thermal decomposition of Fe(acac)3 or iron carboxylate 

salts.49,97,109,156-160 N2-A2-24 was the first reaction conducted under nitrogen using the 

heating mantle. This resulted in nanoparticles with a crystallite size of 6.5 ± 1.2 nm as 

calculated from the powder x-ray diffraction (XRD) pattern in Figure 3.1. using the 

Scherrer equation. The saturation magnetization (Ms) was found to be 53.39 emu/g as 

measured by vibrating sample magnetometry (VSM) and mass corrected by thermal 

gravimetric analysis (TGA) data.  
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 As mentioned previously, the optimal crystallite size for magnetic nanoparticle 

based induction heating has been shown to be around 15 nm.  While this is not the 

overall particle size, and the exact relationship between particle size and heating is not 

clear, our goal was to use the benzyl alcohol based synthesis to increase the crystallite 

and particle size into an optimal range for RF heating. Thus, our hypothesis was that the 

crystallite size could be increased by changing the reaction conditions from nitrogen 

flow to being open to air.  Carrying out the reaction in the presence of air, A2-24, could 

facilitate the oxidation of benzyl alcohol to benzaldehyde and reduction of Fe(acac)3 at 

temperatures further below the start of thermal decomposition, similar to the mechanism 

of metal and metal oxide nanoparticle formation in glycols.48,87-89,161 Reactions carried 

out open to air had reflux drips beginning around 178°C and increased in frequency as 

the temperature was increased to 205°C. These reflux drips suggest the formation of 

benzaldehyde which has a boiling point of 178.1°C.162 It is probable that benzaldehyde 

is formed at lower temperatures and thus reduction of iron precursor to form monomers 

for nucleation is possibly occurring at lower temperatures. Starting the reaction at lower 

temperatures, where the temperature ramp rate is faster, would allow for fewer nuclei to 

form and a better separation of nucleation and growth phases; both of which would lead 

to larger nanoparticles and potentially a larger crystalline core.35 This simple reaction 

parameter change resulted in iron oxide nanoparticles with a crystallite size of 8.33 ± 

0.393 nm (Figure 3.1.) and a Ms of 70.839 emu/g. Typically, the thermal decomposition 

of Fe(acac)3 starts to occur around 170-180°C depending on the solvent.163 

Nanoparticle formation, indicated by a color change from dark red to black, initially 

occurred under nitrogen at 174.4°C after 31 minutes and the reaction solution appeared 
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completely black after 40 minutes (Figure 3.6A.).  In contrast, carrying out the reaction 

under air with identical heating rate and final temperature resulted in an initial color 

change at 169.4°C after 20 minutes and a completely black solution at 30 minutes 

(Figure 3.6B.). This indicates that the presence of oxygen leads to the reaction initiation 

occurring sooner in time and at a lower temperature, suggesting the possibility of an 

additional mechanism by which the iron oxide nanoparticles are forming in benzyl 

alcohol. In order to verify if the benzyl alcohol was acting as a reducing agent in this 

synthesis, FeCl2 was used as a precursor in place of the Fe(acac)3 with the addition of 

sodium hydroxide, NaOH, as in glycol synthetic methods.48,87,89,161 This reaction 

produced iron oxide under both air and N2 (Figure 3.7.) confirming the presence of 

another mechanism of nanoparticle formation in benzyl alcohol other than thermal 

decomposition of Fe(acac)3. As with the Fe(acac)3 synthesis, the FeCl2 reaction under 

air had an initial color change at 90.8°C compared to 99.3°C for N2, and turned 

completely black under air at 127.7°C versus 132.7°C for the reaction under N2 (Figure 

3.6C and D). Therefore, these results suggest that running the reaction under air 

promotes the earlier initiation of nucleation, giving further separation of nucleation and 

growth which led to the increase in crystallite size.  From this mechanistic insight, all 

additional syntheses to increase size were primarily carried out under air. 
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Figure 3.6. Heating curves for reaction of Fe(acac)3 in Benzyl Alcohol heated to 175°C 

under nitrogen (A), and air (B). Heating curves for reaction of FeCl2, NaOH, and Benzyl 

Alcohol heated to 150°C under nitrogen flow (C), and air (D). Initial color change is 

denoted with a golden brown square (nitrogen) or diamond (air), and nanoparticle 

formation upon solution turning black is indicated by a black square or diamond. 
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Figure 3.7. XRD analysis of nanoparticles produced by reacting FeCl2, NaOH, and 

Benzyl Alcohol under nitrogen flow (blue), and air (red). XRD patterns are offset by 

5000 count increments. Peaks at 32.5 and 46.2 are thought to be sodium chloride, 

NaCl. The reaction under nitrogen was composed of 71% NaCl and 29% iron oxide. 

The reaction under air was composed of 77% NaCl and 23% iron oxide. 

 

 3.3.3 Effect of Reaction Time 

 One of the disadvantages of the benzyl alcohol synthesis or thermal 

decomposition syntheses is that longer reaction times are generally required to produce 

larger crystallites with smaller size distributions. Aqueous co-precipitation for example 

can produce iron oxide nanoparticle on the order of a few minutes, but typically have 
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very large size distributions. To investigate if the benzyl alcohol synthesis could produce 

larger crystallites with lower PDI values and similar RF heating characteristics the 

reaction was carried out for 2 hours and compared to A2-24 as shown in Table 3.3. 

 

Table 3.3. Nanoparticle characterization of reactions with different reaction times. 

Saturation Magnetization, Heating Profile, and Average Size determined by VSM, 

Heating Induction, XRD, and DLS. 

Reaction 
Magnetization 

(emu/g)
a 

RF Heating 
([

o
C/min]/mg)

b 
Crystallite 
size (nm) 

Hydrodynamic 
Diameter (nm) 

PDI
c
 

A2-2 60.6 0.03 5.7 ± 0.76 10.93 0.311 

A2-24 70.84 0.17 8.8 ± 0.61 13.64 0.703 
a
mass unit indicates grams of iron oxide nanoparticles corrected by TGA. 

b
mass unit indicates milligrams of Fe determined by Prussian blue assay. 

c
Polydispersity Index (PDI) determined by DLS. 

 

 

As can be seen A2-2 produced iron oxide nanoparticles with a smaller crystallite size of 

5.7 ± 0.76 nm and a lower PDI of 0.311 when compared to A2-24. While the lower PDI 

value is advantageous it is outweighed by the disadvantageous smaller crystallite size 

and lower magnetization saturation value which is reflected in the much smaller RF 

heating of 0.03 [°C/min]/mg. While these results reveal a possible way to lower PDI, 

shorter reaction times do not produce larger crystallite sizes closer to the desired 15 nm 

which is the most vital nanoparticle property in increasing the RF heating properties of 

the iron oxide nanoparticles. 
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 3.3.4 Effect of Reaction Temperature 

 It has been shown that higher temperatures are required for sustained growth of 

crystallite.86,88 Benzyl alcohol has a boiling point of 205°C162 and therefore it is possible 

that carrying out the reaction at increasing temperatures up to 205°C would result in 

nanoparticles with slightly larger crystallites. Investigation of the reaction temperature 

was conducted for syntheses under air and nitrogen environment for two reasons. The 

first reason was to further increase the crystallite size and magnetization saturation, 

while decreasing the PDI values in order to increase the RF heating properties. The 

second reason was to better elucidate the possible mechanism of nucleation and 

growth.  

 The nitrogen syntheses reacted at various temperatures ranging from 150-205°C 

and are shown in Table 3.4. These syntheses showed color change from red to black 

after longer periods of time and at higher temperatures when compared to reactions 

conducted in the presence of air. Additionally, when the reaction was carried out at the 

highest temperature of 205°C, reflux drips were not present. This suggests that the 

benzyl alcohol is not undergoing oxidation to benzaldehyde and thus not reducing the 

Fe(acac)3. Without the redox reaction occurring, it is highly probable that thermal 

decomposition of Fe(acac)3 is the main mechanism of formation of monomers for 

nucleation and growth. In addition, without the reduction of Fe3+ to Fe2+ it is unlikely that 

magnetite is forming, which could explain the lower magnetization saturation values 

(48.54-57.69 emu/g) for nitrogen syntheses. Maghemite has lower magnetization 

saturation values than magnetite for both nanoscale and bulk materials.164 Therefore, 
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nitrogen syntheses in benzyl alcohol may only be producing maghemite. There may be 

differences of RF heat generation between maghemite and magnetite nanoparticles.  

 

Table 3.4. Nanoparticle characterization of reactions conducted at different 

temperatures under nitrogen flow. Saturation Magnetization, Heating Profile, and 

Average Size determined by VSM, Heating Induction, XRD, and DLS. 

Reaction 
Magnetization 

(emu/g)
a 

RF Heating 
([

o
C/min]/mg)

b 
Crystallite 
size (nm) 

Hydrodynamic 
Diameter (nm) 

PDI
c
 

N2-A2-24 53.39  6.47 ± 1.17 23.23 0.351 

N2-A2-24(150) 48.54* 0.01 5.65 ± 0.76 13.02 0.372 

N2-A2-24(175) 57.69 0.04 6.06 ± 0.52 11.51 0.306 

N2-A2-24(195) 57.09* 0.02 6.3 ± 0.89   

N2-A2-24(205) 57.56* 0.05 11.3 ± 0.73 38.48 0.152 
a
mass unit indicates grams of iron oxide nanoparticles corrected by TGA. 

b
mass unit indicates milligrams of Fe determined by Prussian blue assay. 

c
Polydispersity Index (PDI) determined by DLS. 

*VSM data was corrected using 0.88 percent weight of sample 
 
 
 

An interesting result from the data in Table 3.4 is that the crystallite size did not 

increase until synthesized at 205°C. The large increase in crystallite size of 6.3 nm to 

11.3 nm when increasing the temperature from 195°C to 205°C further suggests that 

the reaction is occurring by thermal decomposition only, and is unable to produce highly 

crystalline materials without sufficient energy that is supplied at these elevated 

temperatures. The PDI values also decrease to 0.152 at 205°C, suggesting that 

monodisperse particles can be produced under nitrogen flow in this system only when 

the temperature is sufficiently high.  

 When the reaction temperature was increased for the reactions conducted in the 

presence of air similar trends were observed as compared to nitrogen syntheses with 

some important differences. The crystallite sizes were larger and magnetization 
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saturation values were higher. However, the PDI values indicated more polydispersity at 

lower reaction temperatures. The characterizations of these nanoparticles synthesized 

under air are shown in Table 3.5. 

 

Table 3.5. Nanoparticle characterization of reactions conducted at different 

temperatures open to air. Saturation Magnetization, Heating Profile, and Average Size 

determined by VSM, Heating Induction, XRD, and DLS. 

Reaction 
Magnetization 

(emu/g)
a 

RF Heating 
([

o
C/min]/mg)

b 
Crystallite 
size (nm) 

Hydrodynamic 
Diameter (nm) 

PDI
c
 

A2-24 70.839 0.17 8.8 ± 0.61 13.64 0.703 

A2-24(125) - - - - - 

A2-24(150) 55.50 0.06 6.2 13.58 0.589 

A2-24(175) 70.91 0.14 8.9 ±1.39 12.45 0.61 

A2-24(195) 74.32 0.18 8.1 ± 0.59 13.3 0.65 

A2-24(205) 73.36* 2.76 14.1 ± 0.80 24.53 0.275 
a
mass unit indicates grams of iron oxide nanoparticles corrected by TGA. 

b
mass unit indicates milligrams of Fe determined by Prussian blue assay. 

c
Polydispersity Index (PDI) determined by DLS. 

*VSM data was corrected using 0.925 percent weight of sample  
 
 
 

Reaction A2-24 produced nanoparticles that had similar characteristics to A2-24(175) 

and A2-24(195) so it is thought that the margin of error for the heating mantle leads to 

fluctuating around these temperatures. With temperature controlled precisely using a 

silicone oil bath, it was found that iron oxide nanoparticles were not produced at 125°C. 

At 150°C the nanoparticles synthesized had low magnetization saturation values, 55.50 

emu/g, comparable to nitrogen syntheses. However, the crystallite size of 6.2 nm was 

larger than N2-A2-24(150), but also had a larger PDI value of 0.589. This suggests that 

both oxidation of benzyl alcohol to benzaldehyde to reduce the iron and thermal 

decomposition of Fe(acac)3 are occurring which allows for larger crystallite sizes by 
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better separation of nucleation and growth, but results in larger PDI values caused by 

some overlap of both mechanisms occurring. It is important to note that the RF heating 

rate is drastically increased over the RF heating of nitrogen syntheses. This is most 

likely due to the larger crystallite sizes; however, N2-A2-24(205) had a crystallite size of 

11.3 ± 0.73 nm, and only had a RF heating value of 0.05 [°C/min]/mg. This would 

suggest that the lower magnetization value of 57.56 emu/g could be limiting the 

achievable RF heating. The reactions under air with the smallest crystallite size with 

magnetization saturation values above 70 emu/g have almost triple the RF heating 

properties as the N2-A2-24(205) with a larger crystallite size. When the reaction 

temperature is increased to 205°C the PDI value decreases significantly and the 

crystallite size almost doubles. It is thought that the reaction encounters a “first stage” 

where reduction of Fe3+ to Fe2+ occurs producing initial nuclei by LaMer growth model, 

but is quickly reached and passed in the 205°C synthesis. When this “first stage” is 

quickly reached and passed fewer nuclei are formed before growth by diffusion begins 

due to larger increase in monomer concentration and shorter time for nuclei to form as 

compared to slightly slower ramp of temperature in reactions with lower final reaction 

temperatures. In addition, more monodisperse nuclei are produced in the shorter time 

period in which nucleation is occurring because of the better separation of nucleation 

and growth. The reaction then encounters the second stage where thermal 

decomposition and reduction of Fe is occurring allowing for growth on fewer nuclei that 

have a smaller size distribution which results in larger crystallites and higher 

monodispersity.  
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 The syntheses conducted under air, can produce larger crystallite sizes at lower 

temperatures and achieve lower PDI values with better separation of nucleation and 

growth by utilizing two mechanisms of formation of monomers. This precise control of 

nanoparticle characteristics is highly advantageous for producing nanoparticles where 

small differences in nanoparticle properties can drastically affect the RF heating 

capabilities of the material. The difference is most likely due to syntheses conducted in 

the presence of air containing both thermal decomposition and redox mechanisms 

occurring allowing better separation of nucleation and growth. Therefore more precise 

control of nanoparticles parameters can be achieved when reactions are carried out in 

the presence of air.  

 

 3.3.5 Effect of Reaction Concentration 

 The initial Fe(acac)3 precursor concentration was increased in an attempt to 

increase the crystallite size, as some synthetic methods in the literature use this 

parameter to increase the overall particle size.165 Increasing the Fe(acac)3 amount by 2 

grams per reaction, (A2-24, A4-24 and A6-24) resulted in no significant change in 

crystallite size, Table 3.6. This did however show an increase in the hydrodynamic 

diameter of 13.64 nm, 14.68 nm and 16.5 nm and decrease in polydispersity index 

(PDI) values of 0.703, 0.2 and 0.164 respectively (note: lower PDI corresponds to a 

more monodisperse solution). The increase in overall particle size and decrease in PDI 

can be rationalized by the LaMer growth model.166-168 A schematic representation of the 

LaMer growth model is shown in Figure 3.8.  
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Figure 3.8. Schematic representation of LaMer growth model depicting the generation 

of monomers, formation of nuclei, and growth by diffusion or reaction. Three 

concentrations of monomers are denoted as CS, Cmin
nu, and Cmax

nu representing the 

concentration of monomers that are stable in solution, the concentration at which 

nucleation begins, and the concentration where the rate of nucleation becomes infinite, 

respectively.  Adapted from 166.  

 

Increasing the Fe precursor concentration leads to an increased rate of reaching the 

critical supersaturation concentration for nucleation and the critical limiting 

supersaturation level.166-168 At the critical supersaturation concentration for nucleation 
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the rate of nucleation or the rate at which monomers are used to form nuclei is slow, 

therefore the concentration will continue to increase towards the critical limiting 

supersaturation level.166 As the monomer concentration increases towards this critical 

limiting supersaturation level the rate at which nucleation occurs increases exponentially 

until reaching the critical limiting supersaturation level at which point the rate of 

nucleation becomes infinite.166 Upon reaching this critical supersaturation, a “burst” 

nucleation event occurs depleting the concentration of monomers for nucleation below 

the critical supersaturation concentration thus halting further nucleation.166,168 Quicker 

production of monomers will thus lead to reaching higher nucleation rates or a greater 

“burst” nucleation event which will lead to more monodisperse nanoparticles. Then the 

reaction switches over to growth with the remaining monomers in solution then growing 

on the nuclei.166,168 The growth stage is limited by either diffusion to the surface or 

reaction rate on the surface until the concentration of monomers decreases to the 

solubility concentration.166,168 Once the solubility concentration is reached, Ostwald 

ripening will occur to lower the surface energy of nanoparticles by dissolving the smaller 

nanoparticles that will then grow on larger nanoparticles.172,173 This provides a better 

separation of the nucleation and growth phases to increase the monodispersity and 

more available material for the growth phase leading to larger nanoparticles, for 

reactions A2-24, A4-24, and A6-24, as seen in the results in Table 3.6.   
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Table 3.6. Nanoparticle characterization of reactions with varying precursor 

concentrations. Saturation Magnetization, Heating Profile, and Average Size determined 

by VSM, Heating Induction, XRD, and DLS. 

Reaction 
Magnetization 

(emu/g)
a 

RF Heating 
([

o
C/min]/mg)

b 
Crystallite 
size (nm) 

Hydrodynamic 
Diameter (nm) 

PDI
c
 

A2-24 70.84 0.17 8.8 ± 0.61 13.64 0.703 

A4-24 68.99 0.13 8.3 14.68 0.2 

A6-24 68.25 0.22 7.9 16.5 0.164 

A2-24(205) 73.36* 2.76 14.1 ± 0.80 24.53 0.275 

A4-24(205) 73.07* 1.86 11.7 ± 0.73 22.85 0.269 

A6-24(205) 69.93* 0.85 8.2 ± 1.56 23.9 0.512 
a
mass unit indicates grams of iron oxide nanoparticles corrected by TGA. 

b
mass unit indicates milligrams of Fe determined by Prussian blue assay. 

c
Polydispersity Index (PDI) determined by DLS. 

*VSM data was corrected using 0.925 percent weight of sample 
 
 

 

 One interesting finding was that increasing the concentration of Fe(acac)3 

actually led to a decrease of crystallite size when the reaction temperature was 

increased to 205°C, 14.1 ± 0.80 nm to 11.7 ± 0.73 nm to 8.2 ± 1.56 nm. Although the 

crystallite size decreased, the hydrodynamic diameters remained about the same and 

the PDI only increased when the concentration of Fe(acac)3 was increased to 6 g. 

Increasing the temperature will add energy into the system so that generation of 

monomers, rate of nucleation, and diffusion/reaction rates of growth will all increase. 

These theorized increases can be seen in Figure 3.9. The increase of the polydispersity 

in reaction A6-24(205) can potentially be explained with the theory of mixed diffusion-

reaction growth.169 Growth is controlled depending on whether growth by diffusion or 

growth by reaction is the rate limiting step.169 In the case of A6-24(205) the 

concentration of Fe is so high that diffusion is very quick and therefore growth is 
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controlled by how fast the Fe can react with the surface of nuclei which leads to larger 

size distributions.169 Additionally, it is thought that the rate of particle growth will be 

faster than crystalline growth which explains the smaller crystallite size with the same 

hydrodynamic size, as seen for the reactions A2-24(205), A4-24(205), and A6-24(205). 

For reactions A2-24(205) and A4-24(205), growth is thought to be limited by diffusion 

which gives rise to smaller PDI values. Also, at lower concentrations the rate of diffusion 

will be even slower allowing for more crystalline growth rather than amorphous growth. 

This explains the larger crystallite sizes for the lower concentrations of reactions at 

205°C. 

 There are two proposed reasons for the trend of decreasing crystallite sizes 

produced at higher temperature in combination with increased concentration of 

Fe(acac)3 (A4-24(205) and A6-24(205)). They are rationalized using the LaMer growth 

models in Figure 3.9 and Figure 3.10. The first rationale, is explained by both 

temperature and increased concentration increasing the rate of monomer production 

leading to higher rates of nucleation reached. Figure 3.9. schematically depicts this 

shifting of the LaMer growth model curve based on increasing concentrations of iron 

precursor. This shifting of peaks to earlier time points corresponds with an increased 

rate of monomer production to reach the higher concentrations of monomers at earlier 

time points. Thus with an increased rate of monomer production it is thought that a 

higher nucleation rate will be reached causing a quicker “burst” nucleation event leading 

to the same number of nuclei formed, but with growth limited by reaction rather than 

diffusion. In other words as the concentration is increased the rate of diffusion of 

monomers will become faster than the rate at which monomers can react and grow on 
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the as formed nuclei. Due to this it is believed that at some increased concentration the 

monomers will have less time to grow in a crystalline manner and will grow 

amorphously. This could be why the reactions A2-24(205), A4-24(205), and A6-24(205) 

have decreasing crystallite sizes with similar hydrodynamic diameters.  

 

 

Figure 3.9. Schematic representation of LaMer growth model (blue) depicting the 

generation of monomers, to formation of nuclei, and growth by diffusion or reaction. The 

effect of increasing concentration of precursors leading to an increased rate of 

generation of monomers and longer nucleation time is shown in red and green.  

Adapted from 166.  
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 The increase in PDI for reaction A6-24(205) may also be explained by the 

quicker nucleation and a larger difference in rates of growth by diffusion and reaction. In 

this case, the monomers are overly present in the diffusion layer of the growing 

nanoparticles. This could lead to monomers diffusing to reaction sites immediately after 

the previous one reacted and not being able to properly orientate for continued crystal 

growth. Additionally, the reaction may not have reached the concentration of monomer 

solubility due to such a high concentration of monomers. Therefore, Ostwald ripening 

may not have occurred or there was less time for reduction in size distribution by 

Ostwald ripening. 

 Another possible explanation for the increased PDI with lower crystallite size and 

similar hydrodynamic size for the 205°C reactions is that the faster nucleation rates lead 

to a greater number of smaller nuclei as the concentration is increased. With more 

nuclei that are initially monodisperse, the growing nanoparticles will then go through 

Ostwald ripening with one main difference. Ostwald ripening starting with a 

monodisperse system will lead to a polydisperse system as the nanoparticles will be 

dissolved to monomers which will then grow on other nanoparticles. This will reduce the 

number of nanoparticles formed in comparison to the number of nuclei initially formed 

and thus the PDI will increase. However, the concentration increase from A2-24(205) to 

A4-24(205) may not be large enough to drastically change the PDI. 

 An alternative reasoning for the trend of decreasing crystallite sizes produced at 

higher temperature in combination with increased concentration of Fe(acac)3 (A4-

24(205) and A6-24(205)) is thought to be due to a prolonged nucleation stage as well as 
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higher rates of nucleation reached (Figure 3.10.). LaMer growth model suggests that in 

order for the nucleation stage to end and growth stage to begin, a drop in monomer 

concentration below the critical supersaturation limit is required.166,169 In these reactions 

the higher temperature and concentration of Fe(acac)3 produces monomers faster than 

they can self-nucleate to deplete the concentration of monomers below the critical 

limiting supersaturation level (Figure 3.10., green and red curves). This leads to a 

higher peak where nucleation rates are faster causing more monodisperse nuclei to 

form before the reaction switches completely to growth. For reaction A4-24(205), this 

produces more nuclei that are smaller. At this concentration, the growth is switching 

from limited by diffusion to limited by reaction. This will lead to growth that is more 

amorphous than crystalline but with similar PDI and hydrodynamic values as compared 

to A2-24(205). When the concentration of iron precursor is further increased, as in 

reaction A6-24(205), the peak concentration of monomers is even higher. At this 

concentration, the limit of production of monomers may have been reached. Production 

of monomer will continue to occur even at high rates of nucleation leading to longer time 

required to finish nucleation and switch to growth. This longer nucleation time is 

schematically represented by peak broadening (Figure 3.10. green curve). In other 

words the increased concentration and prolonged nucleation time decreases the 

separation of nucleation and growth which leads to higher polydispersity. Additionally, 

the rate of diffusion is much faster than the rate of reaction leading to even more 

amorphous growth compared to amount of crystallite growth. Thus resulting in the 8.2 ± 

1.56 nm crystallite size and 23.9 nm hydrodynamic size. 
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Figure 3.10. Schematic representation of LaMer growth model (blue) depicting the 

generation of monomers, to formation of nuclei, and growth by diffusion or reaction. The 

effect of increasing concentration of precursors leading to an increased rate of 

generation of monomers and longer nucleation time is shown in red and green.  

Adapted from 166.  

 

 From the results of increasing the concentration of Fe(acac)3 it can be concluded 

that 2 g of Fe(acac)3 is the optimum starting concentration for the benzyl alcohol 

reaction. The increase in concentration along with increase in temperature to 205°C 

may have sufficiently shifted the peak in LaMer growth model leading to smaller 
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crystallite sizes and larger PDI. To further increase the crystallite size while maintaining 

small PDI values, a modified seed growth procedure was investigated.   

 

 3.3.6 Effect of Parameters: Modified Seed Growth 

 Based on reaction A2-2 the shorter reaction time resulted in a smaller crystallite 

size.  However, the PDI was significantly reduced under these conditions. Thus, it was 

thought that this level of monodispersity would provide adequate seeds to use in a 

modified seed growth synthesis to increase the crystallite size further.  

 The primary difference between traditional seed growth processes and the 

modification reported here is in the addition step.  Traditional methods involve cooling or 

aging the nanoparticles, followed by washing in organic solvents and drying to a powder 

to produce the seeds.95,170,171 These seeds are then redispersed in their solvent and 

more iron precursor is added before the temperature is increased back to the reaction 

conditions. In this modified seed growth the addition of more Fe precursor is performed 

at the “hot” reaction temperatures, and thus the nanoparticles stay dispersed and 

remain at temperatures suitable for nucleation and growth.  Using a second addition 

with a 2-hour reaction time, A2-2_B2-2, did produce nanoparticles with an increase in 

overall size (DLS data Table 3.7), but this did not increase the crystallite size.  As 

discussed above, the Fe precursor concentration and short reaction time provided lower 

PDI while the 24 hour step provided a larger crystallite and increased Ms.  Therefore, a 

series of modified seed growth syntheses were conducted with various combinations of 

Fe(acac)3 concentration and reaction time at the first and second additions (data in 

Table 3.7).   
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Table 3.7. Nanoparticle characterization of modified seed growth reactions. 

Saturation Magnetization, Heating Profile, and Average Size determined by VSM, 

Heating Induction, XRD, and DLS. 

Reaction 
Magnetization 

(emu/g)
a 

RF Heating 

([
o
C/min]/mg)

b 
Crystallite 

size (nm) 

Hydrodynamic 

Diameter (nm) 
PDI

c
 

A2-24 
 

70.839 0.170 8.8 ± 0.61 13.64 0.703 

A2-24(175) 70.91 0.14 8.9 ± 1.39 12.45 0.61 

A2-24(195) 74.32 0.18 8.1 ± 0.59 13.3 0.65 

A2-24(205) 73.36 2.76 14.1 ± 0.80 24.53 0.275 

A2-24_B2-24 75.7 
2.536 

1.81 ± 0.72
†
 

14.4 ± 2.42 
11.8 ± 0.91

‡
 

28.93 
24.12 ±4.81

†
 

0.148 
0.178±0.03

†
 

A2-24_B2[cool addition]-24 72.488 0.670 9.5 ± 0.71 20.76 0.252 

A2-24(175)_B2-24(175) 77.89 1.004 11.6 ± 1.01 24.53 0.404 

A2-24(185)_B2-24(185) 77.249 1.068 11.2 ± 0.94 23.11 0.395 

A2-24(195)_B2-24(195) 78.202 4.041 14.9 ± 0.74 37.52 0.219 

A2-24(205)_B2-24(205) 79.35* 
5.55 

5.45 ± 0.09
†
 

19.5 ± 1.06 
18.05 ±1.91

‡
 

44.63 
44.28 ±0.36

†
 

0.265 
0.228±0.04

†
 

A2-2 60.6 0.032 5.7 ± 0.76 10.93 0.311 

A2-2_B2-2 62.85 0.069 6.5 ± 0.67 17.88 0.447 

A2-2_B2-24 76.1 0.211 9.3 ± 0.45 20.07 0.373 

A2-2_B4-2 62.8 0.102 9.5 ± 3.46 15.43 0.258 

A2-2_B4-24 72.18 0.212 9.8 ± 1.33 17.72 0.304 

A2-2_B6-24 75.56 0.639 10.5 ± 1.02 19.42 0.368 
a
mass unit indicates grams of iron oxide nanoparticles corrected by TGA. 

b
mass unit indicates milligrams of Fe determined by Prussian blue assay. 

c
Polydispersity Index (PDI) determined by DLS. 

*VSM data was corrected using 0.925 percent weight of sample 

 
 

 Keeping the first addition constant at 2 grams for 2 hours, it was found that a 24-

hour step was critical in achieving a larger crystallite size and higher Ms.  The sample 

from this series with the highest crystallite size of 10.5 ± 1.02 nm was A2-2_B6-24.  

Since this was still under our goal of 15 nm, a seed growth with two 24-hour reaction 

times was attempted to possibly begin with seeds of larger crystallite size.  The “hot” 
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addition would then allow for continued crystallite growth instead of just particle growth.  

A2-24_B2-24 not only resulted in an increased crystallite size of 14.4 ± 2.41 nm, but 

also a decreased PDI of 0.148. To determine reproducibility reaction A2-24_B2-24 was 

repeated. The averages and standard deviation of the experimental repeats are shown 

in Table 3.7. The crystallite size and PDI have low standard deviations indicating good 

reproducibility. The hydrodynamic diameter and RF heating values were lower for the 

experimental repeat leading to larger standard deviations. A representative transmission 

electron microscopy (TEM) image of A2-24_B2-24 nanoparticles is shown in Figure 

3.11. This increase in monodispersity is speculated to be due to the “hot” addition, 

providing an initial burst nucleation of small nuclei which are subsequently dissolved 

and grow on the larger seeds already present in solution in agreement with “Ostwald 

ripening”.172,173 Additionally this mechanism of growth can increase the monodispersity 

of nanoparticles formed.174 To corroborate this “hot” addition mechanism, a similar 

reaction was cooled to 30°C before the second addition of iron precursor, A2-

24_B2(30)-24. This resulted in nanoparticles with a smaller crystallite size of 9.5 ± 0.71 

nm and an increased PDI of 0.252, which suggests that the “hot” addition does indeed 

facilitate the continued crystallite growth and is an important parameter of this synthesis. 
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Figure 3.11. TEM images of iron oxide nanoparticles synthesized in air by the modified 

seed growth, A2-24_B2-24, and dispersed with TMAOH. Particle diameters are 15.28 ± 

2.21 nm, as determined using Image J software. 

 

 The next parameter investigated for modified seed growth parameters was 

reaction temperature.  Using a silicone oil bath for precise temperature control, the 
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reaction temperature was varied for the modified seed growth reactions A2-24(175)_B2-

24(175), A2-24(185)_B2-24(185), A2-24(195)_B2-24(195), and A2-24(205)_B2-24(205) 

(Table 3.7.). A2-24(175)_B2-24(175) resulted in a crystallite size of 11.6 ± 1.01 nm with 

a PDI of 0.404. Raising the temperature to 185°C, 195°C, and 205°C was hypothesized 

to increase the crystallite size and lower the PDI by promoting the Oswald ripening 

process and providing better separation of nucleation and growth.  Indeed, the 

crystallite size increased to 13.2 nm for A2-24(185)_B2-24(185), to 15.2 nm for A2-

24(195)_B2-24(195), and further increased to 19.5 ± 1.06 nm for A2-24(205)_B2-

24(205). The 195°C reaction yielded the lowest PDI of 0.219 for the temperature series 

with two additions of 2 grams of Fe(acac)3. The second addition of iron precursor most 

likely facilitated additional Ostwald ripening to focus the size distribution of nanoparticles 

produced from the first addition as evidenced by the lower PDI in the modified seed 

growth for their respective temperatures. The reaction at 205°C yielded the highest 

crystallite and hydrodynamic diameter with a relatively low PDI value, but had the 

highest RF heating value of all reactions investigated. This was unexpected as the RF 

heating capabilities should exponentially decrease as the crystallite size is increased 

above the desired 15 nm. It is possible that these nanoparticles have a larger volume 

percentage of nanoparticles that are closer to the desired 15 nm crystallite size, since 

XRD is biased towards larger crystallite sizes. An experimental repeat of reaction A2-

24(205)_B2-24(205) was conducted to determine reproducibility. The characterization 

averages and standard deviations for the experimental repeat are shown in Table 3.7. 

The standard deviations for all of the characterizations indicate high reproducibility. In 

addition the lower crystallite size of the experimental repeat indicates that the 19.5 ± 
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1.06 nm crystallite size was most likely due to XRD measurement bias towards larger 

crystallite sizes. This is corroborated by the fact that all of the characterizations except 

for the crystallite size had very low standard deviations for the experimental repeat. The 

SAR value for reaction A2-24(205)_B2-24(205) was estimated to be 1,175.56 
𝑊

𝑔
 using 

the specific heat of water cH2O = 4.18 
𝑊𝑠

𝑔𝐾
 as a close approximation of the true specific 

heat. The SAR of 1,175.56 
𝑊

𝑔
 was then used with the H = 37.4 

𝑘𝐴

𝑚
 and f = 270 kHz to 

determine the ILP = 3.1127 
𝑛𝐻𝑚2

𝑘𝑔
. While these nanoparticles are not surface 

functionalized their approximate ILP values are comparable to some of the highest 

commercially available synthetic ferrofluids (ILP = 0.15-3.12 
𝑛𝐻𝑚2

𝑘𝑔
).21  Interestingly, the 

temperature effect on crystallite size was not as clearly defined when running only one 

24-hour reaction with samples A2-24(175), A2-24(195), and A2-24(205). The crystallite 

sizes initially decreased from 9.1 nm to 7.8 nm for A2-24(175) and A2-24(195) 

respectively, and then increased to 14.1 nm in reaction A2-24(205) (Table 3.5).  

 Since A2-24(205)_B2-24(205) produced nanoparticles with the largest RF 

heating capabilities, larger first and second additions of Fe(acac)3 were investigated in 

an attempt to lower the PDI while retaining the same crystallite size. These reactions 

are shown in Table 3.8.  
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Table 3.8. Nanoparticle characterization of modified seed growth reactions with varying 

concentrations at first and second additions. Saturation Magnetization, Heating Profile, 

and Average Size determined by VSM, Heating Induction, XRD, and DLS. 

Reaction 
Magnetization 

(emu/g)
a 

RF Heating 

([
o
C/min]/mg)

b 
Crystallite 

size (nm) 

Hydrodynamic 

Diameter (nm) 
PDI

c
 

A2-24(195)_B2-24(195) 78.202 4.04 14.9 ± 0.74 37.52 0.219 

A2-24(205)_B2-24(205) 79.35* 
5.55 

5.45 ± 0.09
†
 

19.5 ± 1.06 
18.05 ±1.91

‡
 

44.63 
44.28 ±0.36

†
 

0.265 
0.228±0.04

†
 

A4-24(195)_B2-24(195) 75.12* 3.13 14.95 ± 2.03 29.5 0.36 

A4-24(195)_B4-24(195) 76.56* 4.48 13.4 ±1.61 31.94 0.121 

A4-24(205)_B4-24(205)  2.74 12.4 ± 1.11 26.67 0.146 

A4-24(195)_B6-24(195) 76.99* 3.43 15.2 ± 1.50 26.6 0.112 

A4-24(205)_B6-24(205) 85.26* 3.14 15.3 ± 2.45 28.2 0.14 

A6-24(195)_B2-24(195) 71.64* 2.71 11.4 ± 1.25 43.89 0.305 

A6-24(195)_B4-24(195) 72.74* 2.88 12.9 ± 0.92 23.5 0.176 

A6-24(195)_B6-24(195) 75.1* 2.58 14.1 ±0.98 26.19 0.231 
a
mass unit indicates grams of iron oxide nanoparticles corrected by TGA. 

b
mass unit indicates milligrams of Fe determined by Prussian blue assay. 

c
Polydispersity Index (PDI) determined by DLS. 

*VSM data was corrected using 0.925 percent weight of sample 
 
 
 

 The reaction A4-24(195)_B2-24(195) produces a crystallite size of 14.95 ± 2.03 

nm and PDI of 0.36 which explains the decrease in RF heating. The concentration of 

the second addition is vital as the newly formed monomers can either form new nuclei 

or grow on the seeds present. The new nuclei are rapidly dissolved into the solution as 

monomers and grow on the seeds in accordance with Ostwald ripening.172,173 With only 

2 g of second addition the new monomers may only grow on a fraction of the seeds 

which leads to larger size distribution. The larger crystallite size can also be explained 

by Ostwald ripening where it is energetically more favorable for the monomers to grow 

on the larger nanoparticles. At sufficiently high concentrations of monomers all of the 

seeds will have an approximately equal number of monomers in its respective diffusion 
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layer.175 In this case all seeds will grow instead of smaller seeds being dissolved to form 

monomers for growth on the larger seeds. This process reduces the surface energy and 

is therefore energetically favored.176 Since all seeds are growing and smaller seeds will 

have a faster growth rate, the smaller seeds will “catch up” to the size of the larger sized 

seeds.175 In other words, more monomers are required for larger nanoparticles to grow 

by the same amount, in terms of increase of diameter increase, than smaller 

nanoparticles.175 Thus reducing the size distribution as evidenced in the lower PDI and 

also increasing the crystallite size for reactions A4-24(195)_B4-24(195), A4-

24(195)_B6-24(195), A6-24(195)_B4-24(195), and A6-24(195)_B6-24(195).  

The smaller crystallite size of 11.4 ± 1.25 nm in reaction A6-24(195)_A2-24(195) 

is most likely due to starting with a smaller crystallite size after the first addition as 

evidenced by the crystallite size of 9.3 nm for reaction A6-24(195). Then following the 

idea that the monomer concentration was insufficiently high at the second addition to 

saturate the diffusion layer of each seed, the smaller seeds will be dissolved for growth 

and reducing the PDI in accordance with Ostwald ripening. Therefore, for these 

reactions a second addition of 4 or 6 g of iron precursor is necessary for larger 

crystallite growth with low size distribution. 

 

 3.3.7 Examination of Radiofrequency Induced Heating Properties 

 Compiling all of the data in Table 3.9, there are several conclusions to be drawn 

from the relationship between RF heating rate, particle characteristics, and synthetic 

parameters.  
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Table 3.9. Nanoparticle characterization of all reactions. Saturation Magnetization, 
Heating Profile, and Average Size determined by VSM, Heating Induction, XRD, and 
DLS for reactions carried out under nitrogen (blue), air for 24 hours (green) and air for 
less than 6 hours (red).  

Reaction 
Magnetization 

(emu/g)
a 

RF Heating 

([
o
C/min]/mg)

b 
Crystallite 

size (nm) 

Hydrodynamic 

Diameter 

(nm) 

PDI
c
 

N2-A2-24 53.39  6.47 ± 1.17 23.23 0.351 

N2-A2-24(150) 48.54* 0.01 5.65 ± 0.76 13.02 0.372 

N2-A2-24(175) 57.69 0.04 6.06 ± 0.52 11.51 0.306 

N2-A2-24(195) 57.09* 0.02 6.3 ± 0.89   

N2-A2-24(205) 57.56* 0.05 11.3 ± 0.73 38.48 0.152 

A2-24 70.839 0.170 8.8 ±0.61 13.64 0.703 

A2-24(125) - - - - - 

A2-24(150) 55.50 0.06 6.2 13.58 0.589 

A2-24(175) 70.91 0.142 8.9 ±1.39 12.45 0.61 

A2-24(195) 74.322 0.175 8.1 ± 0.59 13.3 0.65 

A4-24 68.99 0.134 8.3 14.68 0.2 

A6-24 68.25 0.219 7.9 16.5 0.164 

A2-24(205) 73.36* 2.76 14.1 ± 0.80 24.53 0.275 

A4-24(205) 73.07* 1.86 11.7 ± 0.73 22.85 0.269 

A6-24(205) 69.93* 0.85 8.2 ± 1.56 23.9 0.512 

A2-24_B2-24 75.7 
2.536 
1.81 ± 0.72

†
 

14.4 ± 2.42 
11.8 ± 0.91

‡
 

28.93 
24.12 ±4.81

†
 

0.148 
0.178±0.03

†
 

A2-24_B2[cool addition]-24 72.488 0.670 9.5 ± 0.71 20.76 0.252 

A2-24(175)_B2-24(175) 77.89 1.004 11.6 ± 1.01 24.53 0.404 

A2-24(185)_B2-24(185) 77.249 1.068 11.2 ± 0.94 23.11 0.395 

A2-24(195)_B2-24(195) 78.202 4.041 14.9 ± 0.74 37.52 0.219 

A2-24(205)_B2-24(205) 79.35* 
5.55 
5.45 ± 0.09

†
 

19.5 ± 1.06 
18.05 ±1.91

‡
 

44.63 
44.28 ±0.36

†
 

0.265 
0.228±0.04

†
 

A4-24(195)_B2-24(195) 75.12* 3.13 14.95 ± 2.03 29.5 0.36 

A4-24(195)_B4-24(195) 76.56* 4.48 13.4 ±1.61 31.94 0.121 

A4-24(205)_B4-24(205)  2.74 12.4 ± 1.11 26.67 0.146 

A4-24(195)_B6-24(195) 76.99* 3.43 15.2 ± 1.50 26.6 0.112 

A4-24(205)_B6-24(205) 85.26* 3.14 15.3 ± 2.45 28.2 0.14 

A6-24(195)_B2-24(195) 71.64* 2.71 11.4 ± 1.25 43.89 0.305 

A6-24(195)_B4-24(195) 72.74* 2.88 12.9 ± 0.92 23.5 0.176 

A6-24(195)_B6-24(195) 75.1* 2.58 14.1 ±0.98 26.19 0.231 

A2-2 60.6 0.032 5.7 ± 0.76 10.93 0.311 

A2-2_B2-2 62.85 0.069 6.5 ± 0.67 17.88 0.447 

A2-2_B2-2_C2-2 65.1 0.06 7.4 17.82 0.258 

A2-2_B2-24 76.1 0.211 9.3 ± 0.45 20.07 0.373 

A2-2_B4-2 62.8 0.102 9.5 ± 3.46 15.43 0.258 

A2-2_B4-24 72.18 0.212 9.8 ± 1.33 17.72 0.304 

A2-2_B6-24 75.56 0.639 10.5 ± 1.02 19.42 0.368 
a
mass unit indicates grams of iron oxide nanoparticles corrected by TGA. 
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b
mass unit indicates milligrams of Fe determined by Prussian blue assay. 

c
Polydispersity Index (PDI) determined by DLS. 

*VSM data was corrected using 0.925 and 0.88 percent weight of samples in air and under nitrogen 
respectively 
†
Average with standard deviation of experimental repeat 

‡
Average crystallite size determined by one peak with standard deviation of experimental repeat 

 
 

First, nanoparticles produced without a 24 hour reaction step all resulted in Ms values 

between 60-65 emu/g as shown in Figure 3.12A,C,E (red squares). Upon incorporating 

a 24 hour step, whether at each addition or only the second addition (e.g. – A2-2_B2-

24), the Ms increased to 72-78 emu/g (Figure 3.12A,C,E – green triangles). While the 

Ms also showed a positive correlation with crystallite size (Figure 3.12A) and 

hydrodynamic diameter (Figure 3.12C), there was not a clear correlation between RF 

heating and Ms (Figure 3.12E).   

 Next, in agreement with the literature, there was a strong correlation between RF 

heating and crystallite size with a sharp increase as the crystallite size approaches 15 

nm and a sharp decrease as crystallite size is increased beyond 15 nm (Figure 3.12B).  

The data also shows a correlation between the RF heating and hydrodynamic diameter 

(Figure 3.12D).  While this could be primarily due to the linear correlation between 

crystallite size and hydrodynamic diameter (Figure 3.13B), it could also suggest that 

there is an optimal hydrodynamic diameter to provide maximal heat exchange between 

the particle and the surrounding environment. There is no clear correlation between 

crystallite size and PDI (Figure 3.13A). Further studies will be needed to determine this 

contribution. Lastly, there is an overall negative correlation between RF heating and 

PDI, which indicates a system that is more monodispersed has improved heating.  

However, particle size (both crystallite and hydrodynamic diameter) and size distribution 
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appear to be the dominant determining factors in optimal RF heating for iron oxide 

nanoparticles 

 

 

Figure 3.12. Comparison of syntheses conducted under nitrogen flow (blue), open to air 

with total reaction times less than 6 hours (red), and open to air with reactions involving 

at least one 24 hour reaction step (green). (A, B) Plots of crystallite size versus Ms and 

RF heating. (C, D) Plots of hydrodynamic diameter versus Ms and RF heating. (E) Plot 

showing Ms versus RF heating. (F) Plot of polydispersity index versus RF heating. 
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Figure 3.13. Plot of PDI versus crystallite size (A) and hydrodynamic diameter versus 

crystallite size (B), comparing syntheses conducted under nitrogen flow (blue), under 

atmospheric conditions with total reaction times less than 6 hours (red), and under 

atmospheric conditions with reactions involving at least one 24 hour reaction step 

(green).  

 

3.4 Conclusion 

 The goal of this thesis was to develop and optimize a modified seed growth of 

iron oxide nanoparticles in benzyl alcohol specific for radiofrequency induced heating of 

magnetic nanoparticle colloidal solutions for hyperthermia cancer therapy. To 

accomplish this goal the effects of changing synthetic parameters such as reaction 

environment, time, temperature and concentration were investigated.  The main 

conclusions of this thesis are included below. 

1. Carrying out the benzyl alcohol synthesis open to air, rather than under nitrogen 

flow, allowed an additional mechanism of monomer production for a larger 

separation of nucleation and growth. It is thought that oxidation of benzyl alcohol 
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to benzaldehyde and reduction of Fe(acac)3 occurs giving rise to a larger 

separation of nucleation and growth producing larger crystallite sizes. This is 

evidenced by refluxing beginning just above the boiling point of benzaldehyde 

(178.1°C). Further verification of an additional mechanism was obtained by 

running the reaction similar to glycol methods.  

2. It is hypothesized that the oxidation-reduction mechanisms gives rise to more 

magnetite and thus higher magnetization saturation values observed for 

reactions carried out open to air. Further studies are needed to confirm this. 

3. It was found that longer time lengths in combination with higher temperatures 

and concentrations produced crystallites sizes close to the desired 15 nm with 

relatively low size distribution. The modified seed growth allowed for even larger 

crystallite sizes and better radiofrequency heating rates.  

4. Increasing the reaction temperature and/or concentration gives rise to larger 

separation of nucleation and growth via a “burst” nucleation event. A “burst” 

nucleation event results in larger crystallite sizes and smaller size distributions. It 

is thought that increasing the temperature or concentration of iron precursor the 

rate of production of monomers increases and higher rates of nucleation are 

reached.   This can lead to either a quicker “burst” nucleation or a prolonged 

nucleation event depending on the concentration of iron precursor available and 

the rate of monomer production. These two scenarios in combination with mixed 

diffusion-reaction growth and Ostwald ripening explains the range of crystallite 

size and polydispersion indexes observed. It was found that at some point 

increasing the concentration and temperature further leads to more unwanted 
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amorphous growth, smaller crystallite size, and a wider size distribution. Thus, by 

controlling the concentration and reaction temperature, the best RF heating 

properties were obtained for nanoparticles synthesized by reaction A2-

24(205)_B2-24(205). The estimated SAR of 1,175.56 W/g and ILP value of 3.113 

𝑛𝐻𝑚2

𝑘𝑔
 for these nanoparticles are consistent with commercially available 

ferrofluids.21 These nanoparticle had a crystallite size of 14.6 nm and PDI of 

0.121. The trends observed for nanoparticle characteristics effect on 

radiofrequency heating are in agreement with the literature. 

This investigation of synthesis parameters has provided a better understanding of 

the mechanism of nucleation and growth in the benzyl alcohol synthesis of iron oxide 

nanoparticles. Utilizing the modified seed growth allowed for optimization and control 

over resultant nanoparticle characteristics and radiofrequency induced magnetic heating 

properties. These nanoparticles could be widely beneficial for magnetic hyperthermia   

treatment of cancer.
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